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Our research group uses both plasma theory and simulation as tools in order to increase the under-
standing of instabilities, heatitig, transport, plasma-wall interaction, and large potentials in plasma. We
perform plasma device computer experiments to compare with analytic models and laboratory experiments
in order to accelerate device design.

Our research for 1991 has been widely reported, as given by the listing following, of Journal Arti-
cles, ERL Reports, Talks, and Poster Papers.

Abstracts are attached for some of the talks.

Sent along with this Report are reprints of Journal Articles.

Our prior mode was to publish Quarterly Progress Reports; these then became Semi-Annual Reports,
which ended in 1988. In 1989, we began publishing Annual Progress Reports. While QPR's were excel-
lent exercises in reporting, they required an immense effort; in today’s research climate, such effort is not
available.

We trust that our reporting is still useful.

— C. K. Birdsall
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PLASMA THEORY AND SIMULATION GROUP
Professor C.K. Birdsall

EECS Department

University of California

Berkeley, CA 94720

U.S.A.

1. We have developed the following interactive, real-time, many particle plasma codes
for desktop computing, complete with graphics:

e SPAM: A single particle mover, in speciﬁedf, B fields; runs on a PC.

e ES1, XES1: An electrostatic 1 dimensional, periodic PIC code. Can be magne-
tized. Described in detail in Plasma Physics via Computer Simulation, by Bird-
sall and Langdon, McGraw-Hill 1985 and Adam Hilger 1991 (which has the ES1
disk with it). Input files for projects in Chapter 5. Runs on PC’s, or on X-11
windows equipped computers.

e EM1: An electromagnetic 1 dimensional code, periodic or bounded. Not yet
fully debugged. r

2. We have developed the following plasma device computer experiments; also for desk-
top computing, complete with graphics.

e IBC: Interactive-beam-circuit code; a PIC traveling wave tube, with space charge.

¢ BEDP1, PDC1, PDS1 (planar, cylindrical and spherical bounding electrodes):
1d3v, bounded, magnetized or not, including electron and ion collisions with
neutrals, external circuit, voltage or current sources.

e PDP2: Planar in x, periodic in y, 2d3v. R — 6 and R — Z versions in early
development.

3. PC versions of SPAM, ES1 IBC, PDP1, PDC1, PDS1 are available at cost of handling
from:

Software Distribution Office
Industrial Liaison Program
EECS Dept., Cory Hall
University of California
Berkeley, California 94720
U.S.A.

4. Xgrafix(for X — 11 windows) versions of SPAM, EM1, IBC, PDP1 and PDP2 will
probably be available Spring 1992. Contact Prof. Birdsall on these; do not request
from ILP.

September 9, 1991




PLASMA DEVICE COMPUTER EXPERIMENTS
or
PDCX

Plasma device computer experiments are evolving far beyond what we have called plasma
simulation codes up until now, .

Hence, let us spell out what characterizes PDCX, what is included in PDCX, and some
of the PDCX methods and diagnostics. This is the purpose of this sheet.

PDCX are characterized by:

e whole devices: internal plasma and gas, external circuit;
e real-time displays in internal and external diagnostics(see partial list at bottom);

e interactive, in terms of ease of viewing and re-scaling, as well as ease of setting initial
values of parameters, and in changing parameters any time during an experimental
run.

e results in a form to be compared with laboratory experiments.

PDCX include the electromagnetics, atomic physics and chemical reactions among charged
particles(electrons, *ions, particulates) and neutral atoms and molecules, in three regions:

e surfaces, walls
e sheaths, edges
o bulk plasma

PDCX numerical methods involve a marriage among;:

e PIC, particle in cell, for electron, ion, neutral motion, collective effects;

e MIC, molecule in cell, for electron ion, neutral collisions, short range velocity changes,
Monte-Carlo;

e fluids, many kinds;
e hybrids (fluids plus particles)
PDCX integrations in Z,%, t may be explicit ( to include high frequencies, short wave-

lengths) or implicit ( to keep only low frequencies, high wavelengths), or be multi-scaled in
I, vort.

PDCX diagnostics are non-invasive, available in Z or k or t or w, and are done by species
(e.g., phase spaces, n,(Z,t), f,(E,0),(J- E), in £,t), plus the usual EM quantities and
collision statistics, plus whatever the problem at hand demands.

Comments are most welcome.
C.K. Birdsall, EECS Dept., University of California, Berkeley, CA 94720
September 1991




1. PUBLICATIONS FOR 1991

Journal Articles

Crystal, T.L., P.C. Gray, W.S. Lawson, C.K. Birdsall, and S. Kuhn, **Trapped Electron Effects on Time-
Independent Negative-Bias States of a Collisionless Single-Emitter Plasma Device: Theory and Simula-
tion,"” Physics of Fluids B 3(1), January 1991, pp. 244.

Vahedi, V., M.A. Lieberman, M.V. Alves, J.P. Verboncoeur, and C.K. Birdsall, ‘‘A One Dimensional Col-
lisional Model for Plasma Immersion lon Implantation,”” J. Appl. Physics 69(4), 15 February 1991, pp.
2008-2014.

Alves, M.V., M.A. Liecberman, V. Vahedi, and C.K. Birdsall, ‘‘Sheath Voltage Ratio for Asymmetric RF
Discharges,” J. Appl. Physics 69(7) 1 April 1991, pp. 3823-3829.

Birdsall, C K., *‘Particle-in-Cell Charged-Particle Simulations, Plus Monte Carlo Collisions with Neutral
Atoms, PIC-MCC,"" IEEE Trans. Plasma Science 19(2), April 1991, pp. 65-85 (Invited paper).

Procassini, R.J., and C.K. Birdsall, ‘Particle Simulation model of Transport in a Bounded, Coulomb Colli-
sional Plasma,’’ Phys. Fluids B 3(8), August 1991, pp. 1876-1891.

Friedman, A, S.E. Parker, S.L. Ray, and C K. Birdsall, *‘Multi-Scale Particle-In-Cell Plasma Simulation,”
J. Comp. Physics 96, September 1991, pp. 54-70.

Parker, S.E., and C.K. Birdsall, **‘Numerical Error in Electron Orbits with Large ®..8¢,”’ J. Comp. Physics
97(1), pp. 91-102, November 1991.

Parker, S.E., X.Q. Xu, AJ. Lichtenberg, and C.K. Birdsall, “‘Evidence of Stochastic Diffusion across a
Cross-Field Sheath,”” accepted for publication, Phys. Rev. A.

Parker, SE., A. Frieaman, S.L. Ray, and C.K. Birdsall, **‘Bounded Multi-Scale Plasma Simulation: Appli-
cation to Sheath Problems,’’ accepted by J. Comp. Physics.

Otani, NF., J.-S. Kim, C.K. Birdsall, B.I. Cohen, W. Nevins, and N. Maron, ‘‘Elimination of Velocity
Space Rings-and-Spokes Instabilities in Magnetized Electrostatic Particle Simulations of Plasmas,”
accepted by J. Comp. Physics (approx. June 1992),

Parker, S.E., R.J. Procassini, C.K. Birdsall, and B.1. Cohen, ‘‘A Suitable Boundary Condition for Bounded
Plasma Simulation without Sheath Resolution,”” accepted by J. Comp. Physics.

Verboncoeur, J.P., M.V. Alves, and V. Vahedi, *‘Simultaneous Potential and Circuit Solution for Bounded
Plasma Particle Simulation Codes,"’ accepted by J. Comp. Physics.

Berk, HL., D.D. Ryutov, Y. A. Tsidulko, R.H. Cohen, and X.Q. Xu, ‘‘Electron Temperature-Gradient and
Endloss Driven Transport in SOL of Tokamak Plasmas,” submitted to Comments on Plasma Physics and
Controlled Nuclear Fusion.

Hua, D., X. Xu, and T.K. Fowler, ‘‘Ion-Temperature-Gradient Modes in Non-Circular Tokamak
Geometry,”” to be submitted by end of year.

Xu, X.Q., G. DiPeso, V. Vahedi, and C.K. Birdsall, ‘*Theory and Simulation of Plasma Sheath Waves,’’ to
be submitted by end of year.




Book, Chapter

Birdsall, C K., and A.B. Langdon, Plasma Physics via Computer Simulation, Adam-Hilger edition (with
ES1 disk) 1991.

Birdsall, C.K., and A.B. Langdon, *‘Particle Simulation Techniques,’’ in Computer Applications in Plasma
Science and Engineering, ed. A. T. Drobot (Springer-Verlag: New York), pp. 741, 1991.

ERL Reports

Parker, S.E., X.Q. Xu, AJ. Lichtenberg, and C.K. Birdsall, ‘‘Evidence of Stochastic Diffusion across a
Cross-Field Sheath due to Kelvin-Helmholtz Vortices,”” Memo. No. UCB/ERL M91/79, September 30,
1991.

X.Q. Xu, G. DiPeso, V. Vahedi, and C.K. Birdsall, ‘‘Theory and Simulation of Plasma Sheath Waves,”
Memo. No. UCB/ERL M91/80, September 30, 1991.

Conference Proceedings, Poster Papers

Workshop on Edge Plasma Physics for BPX and ITER, Princeton, NJ, January 15-17, 1991:

Birdsall, C.K., R.J. Procassini, A. Tarditi, and V. Vahedi, ‘‘1D-3V Particle Simulation of Tokamak
Scrape-Off Layer and Divertor Plasmas”™’

International Sherwood Fusion Conference, Seattle, WA, April 22-24, 1991;

Birdsall, CK., X.Q. Xu, S.E. Parker, and A.J. Lichtenberg, *‘Evidence of Stochastic Diffusion across
a Cross-Field Sheath”

Hua, D., Fowler, TK., and Xu, X.Q., *‘Gyrokinetic Particle Simulation of ITG Modes in General
Toroidal Geometry™’

Tarditi, A., **2D-Hybrid Particle Model with Non-Linear Electron Distribution®’

Xu, X.Q. G. DiPeso, V. Vahedi, and CK. Birdsall, ‘““Theory and Simulation Study of Surface
Waves in Bounded Plasma’’

IEEE International Conference on Plasma Science, Williamsburg, VA, June 3-5 1991:

Tsung, F., J. Trulsen, V. Vahedi, and C.K. Birdsall, *‘Simulation of Potentials Created by Particu-
lates in RF Discharges: Residence at the Sheath Edges’"

Vahedi, V., M.A. Lieberman, G. DiPeso, C.K. Birdsall, T.D. Rognlien, J.R. Hiskes, and R.H. Cohen,
**An Atomic Physics Model in a Particle-in-Cell Code for Simulation Plasma Processing”’

Sixth International Conference on Emerging Nuclear Energy Systems, Monterey, CA, June 16-21, 1991:

Avanzini, P.G., and A. Tarditi, ‘‘Progress Towards a Neutralized beam Experiment for a Colliding-
beam Advanced-Fuel Fusion Process’’

Tarditi, A., **Multi-Tum Electron-Ion Injection Study for Neutralized High-Density Beam Sustaining
in a Closed Configuration®’




International Conference on Phenomena in Ionized Gases, Pisa, Iialy, July 8-12, 1991:

Tarditi, A., *‘Particle Simulation of Neutralized Ion Bernstein Waves’’

14th Conference on Numerical Simulation of Plasmas, Annapolis, MD, September 4-6, 1991:

Vahedi, V., M. Surendra, G. DiPeso, and J. Verboncoeur, ‘‘Numerical Methods for Simulating Pro-
cessing Plasmas’’

Vahedi, V., J.P. Verboncoeur, and C.K. Birdsall, *‘Xgrafix: An X-Windows Environment for Real-
Time Interactive Simulations’’

44th Annual Gaseous Electronics Conference, Albuquerque, NM, October 22-25, 1991:

Vahedi, V., P. Mirrashidi, B.P. Wood, M.A. Lieberman, and C.K. Birdsall, ‘‘A Comparison of PIC
Simulation and Experimental Results in a Capacitive RF Discharge”’

Lieberman, M.A., V. Vahedi, and R.A. Stewart, ‘‘An Analytic Model for the lon Angular Distribu-
tion Function in a Highly Collisional Sheath™

Vahedi, V., M.A. Lieberman, G. DiPeso, and C.K. Birdsall, ‘‘A Bounded Particle in cell Code with
an Atomic Physics Model for Simulating Processing Plasmas’’

Lieberman, M.A., V. Vahedi, and R.A. Stewart, *‘An Analytic Model of the Ion Angular Distribu-
tion Function in a Highly Collisional Sheath”

Mirrashidi, P., B.P. Wood, V. Vahedi, M.A. Lieberman, and C.K. Birdsall, ‘‘A Comparison of PIC
Simulation and Experimental Results in a Capacitive RF Discharge’’

Vahedi, V., M.A. Lieberman, G. DiPeso, C.K. Birdsall, T.D. Rognlien, J R. Hiskes, and R.H. Cohen,
““An Atomic Physics Model in a Particle-in-Cell Code for Simulation Plasma Processing”’

33rd Annual Meeting of the American Physical Society, Division of Plasma Physics, Tampa, FL,
November 4-8, 1991:

Xu, X.Q., G. DiPeso, V. Vahedi, and C.K. Birdsall, *‘Theory and Simulation of Sheath Waves in
Bounded Plasmas’’

Vahedi, V., M.A. Lieberman, G. DiPeso, C K. Birdsall, T.D. Rognlien, J.R. Hiskes, and R.H. Cohen,
**A Particle in Cell Code with an Atomic Physics Model for Simulating Processing Plasmas®’

Cohen, R.H., and X.Q. Xu, *‘Scrapeoff-Layer Instabilities Driven by Temperature Gradients and End
Loss™

Tarditi, A., “*Hybrid Particle-Fluid Simulation fo Magnetized Ion Plasma-Sheath Waves®’
Tarditi, A., **Merging-code approach for Realistic Simulation of Plasma Experiments”’

Theilhaber, J., ‘‘Quantum-Molecular-Dynamics Simulations of Liquid Metals and Highly-
Degenerate Plasmas’’ (Invited paper)

1st Brazilian Congress on Plasma Physics, Santos SP, Brazil, December 10-13, 1991:

Birdsall, C.K., *Particle-in-Cell Simulations Plus Monte-Carlo Collisions, PIC-M.CC, for Partially
Tonized Gases, in Bounded Systems’’ (Invited paper)




Short Course

*‘Plasma Simulation’’ was taught to third world professionals at the Intcrnational Center for Theoretical
Physics, Trieste, Italy, June 3-13, 1991, by C.K. Birdsall and V. Vahedi.

Invited Talks

C K. Birdsall presented several talks and live demonstrations on bounded plasma computer experiments:
Vienna (Technical University, June 18, 1991); Garching bei Minchen (Max Planck Institute for Plasma
Physics, July 2, 1991); Bochum (University, July 23, 19%1); Sao Paolo (Conference, December 1991)

Awards

1. C.K. Birdsall was a Lecturer/Researcher at University of Innsbruck, Austria, February 15 to July 28,
1991. He presented a term-long course on plasma simulation and gave several lectures in the local
plasma seminar

2. At the College of Engineering graduation in May, Prof. Birdsall was given the Berkeley Citation, in
recognition of activity in plasma simulation and for helping found the Energy and Resources Group
(ERG) in 1972-1974.

3. At the 14th International Conference on Numerical Simulation of Plasmas banquet on September 5,
1991, in Annapolis, MD, former students and post-doctoral researchers of PTSG (who now number
almost 50) presented Prof. Birdsall a plaque (surprise!) inscribed:

To Professor Charles K. (Ned) Birdsall
In warm appreciation of your many important achievements in the sciences of electronics,
plasma physics, and computer simulation; of your effective promotion of international
cooperation in science; and of your contributions to the lives and careers of the many of us —
students, post- doctoral researchers, and collaborators — who have benefited by interacting
with you, our colleague and friend.

CKB comments® : This is wonderful, especially as it comes from our simulation ‘‘family,’" which has been
most productive and very warm friends over the past several decades. You all have made my 33 years at
UC a very good life. Thank you!

* Yes, I am now retired from UC: however, while this means no regular teaching schedule, I plan 1o continue in plasma
research, with PTSG, for some time 1o come. —CKB




II. LIST OF REPRINTS AND REPORTS
SENT WITH THIS REPORT

Crystal, T.L., P.C. Gray, W.S. Lawson, C.K. Birdsall, and S. Kuhn, *‘Trapped
Electron Effects on Time-Independent Negative-Bias States of a Collision-
less Single-Emitter Plasma Device: Theory and Simulation,’” Physics of
Fluids B 3(1), January 1991, pp. 244

Vahedi, V., M.A. Lieberman, M.V. Alves, J.P. Verboncoeur, and C.K. Birdsall,
**A One Dimensional Collisional Model for Plasma Immersion Ion Implan-
tation,”’ J. Appl. Physics 69(4), 15 Fcbruary 1991, pp. 2008-2014

Friedman, A., S.E. Parker, S.L. Ray, and C.K. Birdsall, ‘‘Multi-Scale Particle-
In-Cell Plasma Simulation,’’ J. Comp. Physics 96, September 1991, pp.
54-70

Alves, M.V, M.A_ Lieberman, V. Vahedi, and C.K. Birdsall, *‘Sheath Voltage
Ratio for Asymmetric RF Discharges,’’ J. Appl. Physics 69(7) 1 April
1991, pp. 3823-3829

Birdsall, C.K., “‘Particle-in-Cell Charged-Particle Simulations, Plus Monte Carlo
Collisions with Neutral Atoms, PIC-MCC,’’ IEEE Trans. Plasma Science
19(2), April 1991, pp. 65-85 (Invited paper)

Procassini, R.J., and C.K. Birdsall, ‘Particle Simulation model of Transport in a
Bounded, Coulomb Collisional Plasma,’* Phys. Fluids B 3(8), August
1991, pp. 1876-1891

Parker, S.E., X.Q. Xu, A.J. Lichtenberg, and C.K. Birdsall, ‘‘Evidence of Sto-
chastic Diffusion across a Cross-Field Sheath due to Kelvin-Helmholtz
Vortices,”” Memo. No. UCB/ERL M91/79, September 30, 1991




III. ABSTRACTS OF 1991 TALKS AND
POSTERS, UNPUBLISHED

Workshop on Edge Plasma Physics for BPX and ITER, Princeton, NJ, January
15-17, 1991 (1 abstract)

International Sherwood Fusion Conference, Seattle, WA, April 22-24, 1991 (4
abstracts)

IEEE International Conference on Plasma Science, Williamsburg, VA, June 3-5
1991 (2 abstracts)

Sixth International Conference on Emerging Nuclear Energy Systems, Monterey,
CA, June 16-21, 1991 (2 abstracts)

International Conference on Phenomena in fonized Gases, Pisa, Italy, July 8-12,
1991 (1 abstract)

14th Conference on Numerical Simulation of Plasmas, Annapolis, MD, Sep-
tember 4-6, 1991 (? abstracts)

44th Annual Gaseous Electronics Conference, Albuquerque, NM, October 22-25,
1991 (3 abstracts)

33rd Annual Meeting of the American Physical Society, Division of Plasma Phy-
sics, Tampa, FL, November 4-8, 1991 (6 abstracts)
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Theory and Simulation Study of Surface Waves

in Bounded Plasma

X. Q. Xu, G. DiPeso, V. Vahedi, C. K. Birdsall
Electronics Research Laboratory

U. C. Berkeley, CA 94720

Surface waves have been investigated analytically and with particle simulation for an
unmagnetized 2d plasma slab with periodic boundary conditions in y and bounded in x
with either vacuums (isolated plasma) or conducting walls. In the vacuum boundary case,
the particle simulation results are found to agree reasonably with theory for high frequency
surface waves.! For a plasma inside two absorted conducting walls, simulation indicate that
surface waves propagate along the static sheath-plasma boundary. Analytically treating
the sheath as a vacuum layer, the surface waves bear a resemblance to plasma-vacuum
surface waves with the vacuum dielectric constant ¢ replaced by €p arctan(kyA), where
A is width of the static sheath. Nonlinear interaction of bulk and surface waves in the

system will be discussed.

References

1. A. G. Sitenko, Fluctuations and Non-linear Wave Interactions in Plasmas,

(Pergamon Press, Oxford, 1982)




Evidence of Stochastic Diffusion across a Cross-Field Sheath

due to Kelvin-Helmholtz Vortices

C.K. Birdsall, X.Q. Xu, S. E. Parker', and A.J. Lichtenberg

Electronics Research Laboratory

University of California, Berkeley, California 94720

September 13, 1991

Abstract

Our objective is to identify the mechanisms for particle transport across a cross-
field sheath. We present a study of E x B motion in a vortex in which the ions are
perturbed by the finite gyroradii and electrons are perturbed by one or more traveling
waves. Large scale vortices which are the result of a shear in the E x B drift velocity
have been observed in plasma simulations of the cross-field sheath!=3. Small scale
turbulence is also present. The vortices are the result of the nonlinear saturation of the
Kelvin-Helmbholtz instability. A vortex alone does not allow for the observed electron
transport because the electron drift orbits simply circulate. On the other hand, the
ion motion can be stochastic from resonant interaction between the drift motion and
the gyromotion, independent of the background turbulence. The fluctuations in the
ion density would then give rise to small amplitude wave spectrum. The combined
action of the vortex fields and traveling wave fields on the electron motion can again
lead to stochasticity. We study these effects, showing that the values of vortex fields,
observed in the simulation, are sufficient to lead to both ion and electron stochastic
diffusion. Furthermore, the rate of the the resulting diffusion is sufficient to account for

the diffusion observed in the simulation.

! Present address: Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543.
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2D-HYBRID PARTICLE MODEL WITH NON-LINEAR ELECTRON DISTRIBUTION

A. Tarditi

Electrical Engineering and Computer Science, Electronic Research Lab.
University of California at Berkeley - Berkeley, CA 94720 (USA)

ABSTRACT

A 2D, hybrid (particle-ion, fluid-electron) simulation code
characterized by the solution of the non-linear modified Polisson
equation, which results assuming the Boltzmann distribution for the
electrons, is presented.

Following [1], the field solution is achieved through an iterative
procedure. Anyhow a new scheme is consicered. The potential s not
obtained by directly solving the finite difference equaticon but via
the Green's function method.

The procedure begins with the first guess for the potential. This |is
found through the solution of the linearized modified FPoisscn
equation. The Green's function for this equation, in the 2D case which
is considered, can be found anaiytically in term of _the Neumann
functions (213, [31.

Once the potential corresponding te the linearized modified FPcisscn
equation is known, the first approximaticn of the electron (8oltzmann)
distribution can be calculated. This distributicn, plus the one given
by the (particle) ions, is considered as the socurce term for the
Poisson equation (which now is not "modified'" since the fluid electron
component is taken into account in the source term itself).

The solution of this Poisson equation gives the second approximaticn
of the electric potential and is still obtained via the Green's
function method (as it comes from the Coulomb law, mocdified for the 2D
case, [21).

Each time step this procedure can be iterated according to the desired
accuracy. The last iteration cycle is different: in fact the direczt
solution for the electric field can be obtained, without numerical
differencing from the potential. It is sufficient in this case to
consider the electric field Green's functions (x- and y-component) for
the Poisson equation (in place of the electric potential Green's
function). -

The first results obtained with this new code are here presented and

compared with previous simulation runs based on a linearized Boltzmann
distribution model, as in (23, [31].

REFERENCES

(11 H. Okuda, J.M. Dawson, A.T. Lin , C.C. Lin, Phys. Fluids, 21, 47¢
(1978)

2] A. Tarditi, Ph.D. Thesis, University of Genova (Italy), 1990

€3] A. Tarditi, submitted to the XX Int. Conf. on Phenomena in Icnizead
Gases, 1991
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Gyrokinetic Particle Simulation of ITG Modes in General Toroidal Geometry

Daniel Hua, T.K. Fowler
Department of Nuclear Engineering
University of California
Berkeley, CA 94720

Xuegiao Xu
Electronics Research Laboratory :
University of California
Berkeley, CA 94720

Abstract

We have generalized the 1-1/2 d linearized gyrokinetic particle
simulation code of Xu et. al. [1] to tokamaks with non-circular corss section
(i.e. elongation and triangularity) to study ion temperature gradient modes
(ITG) in the presence of ion-ion collisions. We hope to determine the role of
local magnetic shear, poloidal beta and various geometric factors in linear
growth rate and transport coefficients. For comparison to DIII-D, we apply the
code with input parameters calculated by the MacEquilibrium Code of Haney
[2] using experimental measurements of DII-D.

[1] Xuegiao Xu, to be published ir Physics of Fluids B.

[2] Scott Haney, Ph.D. Thesis, MIT.
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AN ATOMIC PHYSICS MODEL IN A PARTICLE-IN-CELL
CODE FOR SIMULATING PLASMA PROCESSING'

Vahid Vahedi, M. A. Lieberman
G. DiPeso and C. K. Birdsall
University of California, Berkeley
Berkeley, CA 94720

T. D. Rognlien, J. R. Hiskes, and R. H. Cohen
Lawrence Livermore National Laboratory
Livermore, CA 94550

We are combining a particle-in-cell (PIC) model for particle with a Monte Carlo collision
(MCC) scheme to model the collisions between the charged and neutral particles. The MCC
model can also be extended to model Coulomb collisions between charged particles which tends
to be significant at very low temperature RF discharges and in ECR discharges. We are comparing
the merits of treating the neutrals as fluids and/or as particles. These models are incorporated into
PDP12, a bounded one dimensional plasma simulation code. As a specific example, we consider
oxygen RF discharges, at various neutral pressures and RF voltages. The atomic physics model
for oxygen currently only includes the energy dependent processes of ionization, dissociation,
recombination, detachment, and charge transfer. Electrons, 0,*, 0", and O are evolved as particles.
We are studying the modification of the dynamics of the discharge owing to the presence of a
substantial concentration of negative ions. The atomic physics model can also be used for many
other types of processing discharges, such as ECR discharges.

1. Work performed for USDOE by LLNL under contract W-7405-ENG-48; a portion of the
UCB work performed for NSF under grant ECS-8910827.

2. L. J. Morey, V. Vahedi and J. Verboncoeur, Particle Simulation Code for Modeling Process-
ing Plasmas, Bull, APS, 34:2028, (1989) (Abstract); Codes available from Industrial Liaison
Program, EECS Dept., UC Berkeley.
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SIMULATION OF POTENTIALS CREATED
BY PARTICULATES IN RF DISCHARGES:
RESIDENCE AT THE SHEATH EDGES'

F. Tsung, J. Trulsen,
V. Vahedi, C. K. Birdsall

University of California, Berkeley
Berkeley, CA 94720

Heavy particles may play a role in determining the average potentials experienced by ions
in RF discharges, hence ion acceleration into targets. Particulates or dust particles also may play
a role in many other plasmas. Hence, it is desirable to find where these heavy particles reside
(with respect to the edge of the plasma, or sheath) and their effect of the time average potential
which accelerates ions through the sheath.

Using our many-particle PIC-MCC 1d3v simulation code PDP1?, we have been able to show
that the particulates tend to become charged negatively, using cross sections for electron and ion
attachment worked out here by Trulsen, inspired by work of R. Carlile at Univ. Of Arizona’. We
have placed one heavy particle at various locations in the sheath and found that special location
where the time average field at the particle is zero; this is then the residence of the particle, which
turns out to be very near the time average sheath edge. We are now putting in a large number of
particulates and allowing them to move and affect the potential across the whole RF discharge;
this is feasible only by lowering the particulate mass from about 10® argon ion mass to some
smaller values, still running a long time (many RF cycles). We will report on the results at the
meeting.

1. Work supported in part by Univ. Of Arizona Sematech Ctr. for Excellence, J. Prince, Dtr.

2. 1. J. Morey, V. Vahedi and J. Verboncoeur, Particle Simulation Code for Modeling Process-
ing Plasmas, Bull, APS, 34:2028, (1989) (Abstract); Codes available from Industrial Liaison
Program, EECS Dept., UC Berkeley, CA 94720.

3. R. N. Nowlin and R. N. Carlile, "Electrostatic Nature of Contaminative Particles in a Semi-
conductor Processing Plasma”, ECE Dept., Univ. Of Arizona (Submitted for publication)
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PROGRESS TOWARDS A NEUTRALIZED BEAM

EXPERIMENT FOR A COLLIDING-BEAM,

ADVANCED-FUEL FUSION PROCESS

P.G. Avanzini and A. Tarditi

ANSALDO RICERCHE - Corso Perrone 25 -16161 Genova {(ITALY)

.Electrical Engineering and Computer Sciences - Electronic Research Laboratory
University of California at Berkeley - Berkeley, CA 94720 (USA)

ABSTRACT

The problem of sustaining a colliding

ion beam process for advanced-fuel fusion
power generation is considered. In order to
overcome the space charge limit on the beam
density, a concept based on a neutralized
ion-electron beam is introduced.
A device with fairly novel features 1is
described and preliminary design
conslderations for a basic neutralized beam
experiment are outlined.

INTRODUCTION

An approach to a fusion process based on
colliding beams has been studied for several
years [1-4].

The optimal reactivity conditions for a given
fusion reaction are obtained when two
monoenergetic counterstreaming ion beams
collide with relative velocity chosen
reaching the maximum of the fusion cross
section.

The generation of ion beams with energies of
hundreds of keV, that is the typical range
for the reactivity maxima of very energetic
and “"clean" reactions such as H- B or D-"He
(S} is rather easy (while these energies are
prohibitive for confined plasma heating and
ignition). A closed confinement geometry for
the colliding beams has to be necessarily
considered ("open beam” configurations are
hopeless for energy production purpouses).
For a reactor with reasonable fusion power
density a reacting fuel density of at least
10t m = is required. Then, ion beams of such
a density with energy in the 100 keV range
have to be produced and confined while they
collide.

At these densities, due to the space charge
force the beams must be neutralized: for this
purpose also a fast electron beam |is
considered. For electrodynamical stability
reasons the two lon beams run in the same
direction at a given relative velocity (there
will be a fast and a slow beam) while the
electrons will be counterstreaming

A "neutralized” (and not "neutral”) beam will
then result because, being charge balanced,

it shows global electrical neutrality but,
due to the high electron-ion relative
velocity, also low recombination (and elastic
collision) rate.

THE OPTIMAL FUSION PROCESS

THE OPTIMAL REACTIVITY CONDITIONS

In order to estimate the fusion power
production, the rate Rab (number of fusions

between the speci®s "a" and "b" per time and
volume unit) can be defined as

R =nnou (fusions/(m’s))

ab abf ab
where na,b are the densities of the reacting
species, uab their relative velocity and or
the fusion cross section. Here uav is the
same for all the particles (case of two
colliding monoenergetic beams).
The fusion power density will then be
expressed as pr=Rabv-Er where Er is the energy
released per fusion.
The maximum rate is obtained when the
quantity eruab ("reactivity”) is maximum.
The same definition holds when a
non-monoenergetic velocity distribution Iis
given: in this case the reactivity is defined
as <erv> by averaging over the velocity
distribution [4].
The curves of or versus particle relative
energy are well referred in the literature
(S)]. Then the reactivity vs. particle energy
trend can be readily found.
The reactivity maxima for colliding beams and
thermal plasmas are summarized in table 1.
Here the D~T reaction has been compared with
the most Iimportant neutron free fuslion
reactions (characterized by high or and Er at
the same time [4]).
These estimates show that the maximum ideal
efficiency of the colliding beam approach is
greater than that of the hot plasma roughly
by a factor of two.
In a real device the Breﬁsstrahlung losses
must be also taken into account: they set a
limit to the temperature that can be reached
in a plasma at ignition.

LCENES




For a neutralized beam (electron-ion) beam
with axial velocity much greater than the
thermal velocity (i.e. with small transversal
temperature), the effect of Bremsstrahlung
radiation losses is less important.

COLLIDING BEAMS VS. PLASMAS

The previous discussion about the
expected maximum fusion efficiency must be
integrated by taking 1lnto account the power
losses. The optimal conditions will be
reached when the gain =pf/ploss of the
process 1s maximum, where ploss is a power
density that takes into account the energy
absorbed during the process operation. Then
the real "optimal"” fusion cycle shall not
necessarlly correspond to the maximum fusion
cross section since the greater pr could be
counterbalanced by an increase in pioss.

<u‘fv>lnax o.I‘ulmux Er El‘”fuinax
(MeV) | (Jm°/s)
H-''B|3.5-107%%|7.3-107%?} g ea | 1072
(1 MeV) |(700 keV)
D-He|2.2-107%%|5.8-10"2%| 18.35 {1.7-10"

(300 keV)| (420 keV)

22 21 33

D-T 8-10° 2-10°
(50 keV}' (100 keV}

17.59 |S.6-10°

Table 1.1 - Reactivity comparison for
colliding beams and thermal plasmas in D-T,
H- B and D~"He reactions.

In a thermal ©plasma the Bremsstrhalung
radiation loss increases with electron
temperature imposing then a severe limit on
the energy galn of the process and making
prohibltive those high temperature regimes
required by optimal reactivities in advanced
fuel reactions [7]. In practice plasma
breakeven will be possible only at a lower
temperature than that maximizes the fusion
cross section.

Then a hot plasma-based fuslon cycle will be
at most a sub-optimal process from the
reaction 1ideal efficiency point of view
(besides the problems concerning the heating,
the ignition and the confinement of plasmas
at tens of keV or more).

By trying to conceive a fusion process closer
to the 1ideal fusion cycle conditions, a
colliding beam approach seems to be a
"natural” answer.

As pointed out previocusly, the attainment of
fon beam energies of hundreds of keV does not
represent a problem.

The first difficulty arises from power
density considerations. For example, also by
choosing the D-T reactlon, in order to get

Just pr=103 w/m® (a very small power density
for a reactor) the beamsdensity fequired fqr
each speclﬁ; is n =(107/5.64-10 77) "“=4-10
particles/m”~. However the stable confinement
of such a beam density is unfeasible due to
the space charge limits and the concept of
neutralized beam has to be introduced.

ENERGY BALANCE CONSIDERATIONS

Output fusion power is produced as long
as the lon beams keep on running with
sufficient relative speed. .

The particles “burned” in the fusion
reactions represent an unavoidable loss and
they shall be replaced in order to keep the
density constant. Moreover there will be a
flux of scattered particles (ions and
electrons) which, for the high transversal
velocity acquired, will tend to escape from
the beam. Some of these particles will be
lost and they have to be replaced, too.

Due to these losses input beams supplied by
the injectors are also needed to preserve the
achieved regime conditions for a longer
time.

The system, In regime conditions, 1is then
continuously fed by two lon accelerators and
by an electron accelerator for replacing the
particles scattered out of the beam or
"burned"”.

The intrinsic gain (i.e. in the ideal,
lossless case) of the process can be readily
expressed by considering the power density
required to supply the fuel particles
"burned” in the fusion reactions. If Wa and
Wo are the kinetic energies of the reacting
lons, the power density the accelerators
shall yield is pprn= Rab- (WatWb), where Rab
is the fusion rate. Then the intrinsic gain
will be simply

G = =
! P W oW

brn a b
By choosing  Wa+WbzWablopt  (the  optimum
relative beam energy quoted for crufmsx in
table 1) an Intrinsic gain of about 12 for
the H-''B reaction, 44 for D-He and 176 for
D-T is found.
This is really the maximum gain one could
expect since the assumption Wa+Wb=Wab|opt
corresponds to the case of counterstreaming
fon beams with zero center-of-mass velocity
{31].
The long-range colllisions produce a gradual
thermalization and detertorate the
confinement but they do not throw the
particles out of the beam, so particle losses
are due directly only to short-range
collisions.
However, not all the short-range scattered
particles will be lost. This is mainly due to
the fact that the center of mass in all these
collisions 1is moving (w.r.t. the laboratory
frame) because the lon beams are moving In




the same direction: the scattering
cross-sectlon is defined for a square-angle
momentum deviation in the center of mass
frame. By means of simple mechanical
considerations [9], it 1s easy to show that
when the ions are moving fast, the scattering
ang.e in the laboratory frame is considerably
reduced.

BASIC OPERATION OF A NEUTRALIZED BEAM DEVICE

The neutralized beam process is based on
two fundamental items: i) an injection
process that in the start-up phase creates a
high-density neutralized beam by accumulating
particles from low-density electron and ion
injectors and in the final operating regime
compensates the particles lost or “"burned” in
the fusion reaction; ii) a confinement system
which provides a sufficient beam stability
from the first injection (low-density) phase
to the final high-density pinched condition.
The first item has been extensively studied
and the last results are presented in [6].
Direct supply of very high-density, 100's keV
fon and electron beams does not seem feasible
due technical and economic issues; it was
envisaged that a high-density neutralized
beam can be produced in a ring configuration
using low density, electrostatic, ion and
electron accelerators. The basic principle is
to keep a sufficient beam stability for the
beam to allow a very fast accumulation of
particles.

THE NEUTRALIZED BEAM

THE ION AND ELECTRON COMPONENTS

The basic idea is to "assemble"” a high
density “neutralized beam" by confining the
ton and electrons together.

The electrons produce unavoidable collisions
and radiation losses leading towards the
thermalization of the whole system. However
the faster the electrons run with respect to
the 1lons, the lower 1is the electron~ion
Coulomb col!lision cross section. Then a very
fast electron neutralization component can
reduce the collisional rate at an acceptable
level.

Furthermore the high velocity electron beam
will have a small energy spread, l.e.
trasversal temperature, allowing a very small
Bremsstrhalung loss.

Here the lon energy is tplcally greater than
in a discharge-produced plasma since it is
provided Iindependently to ion and electron
beams. The presence of these high momentum
fons could have a favourable influence on
stability agalinst "kink" or "sausage” pinch
instabilities.

THE LOW-DENSITY COLLISIONLESS BEHAVIOUR
The beam is "a priori” subjected to both

the space charge fields produced by the other
particles and to the external confinement
fields.

A simple estimate, however, shows that during
the 1injection phase the self-consistent
fields <-are negligible with respect to the
external confinement ones because the low
beam densitles. This means that a
single-particle treatment can be applied to
study the neutralized beam formation and
confinement in the early phase of operation.
Then, at the injection phase, the particle
trajectories are determinated nly by
external fields and the electron and ion
beams constitute a non-collisional system
which the single-particle treatment can be
applied to.

THE INCREASE OF THE BEAM DENSITY

At the startup, low-density electron and

ion beams are injected into the device. Each
beam will be constrained in a circular path
by an external confinement and focusinrg
system (4, 6].
In the hypothesis of perfect confinement, if
L is the length of the beam orbit, no is the
beam density at the accelerator output and vo
its (longitudinal) velocity, -the density will
increase linearly with time as

n{t) = n, vot/L =n, t/t

being t=L/voc the typica% time constant.

For example, if vo=10 m/s and L=1 m, a
density increase by three orders of magnitude
will take 107" s.

THE HIGH-DENSITY REGIME CONDITIONS

The regime conditions for a neutralized
beam will be characterized by a strong
poloidal magnetic field with the related
pinch effect.

If the beam minor radius is much greater than
the Debye- lenght (defined through the
transversal temperature) the neutralized beam
is like a neutral, "soft"” conductor carrying
a strong current. In this condition the
toroldal curvature radius could be imposed by
an external dipolar fleld directed as the
beam ma jor axis.

The beam centrifugal force per volume unit is

2
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where Rc is the curvature radius of the beam.
The force due to an external magnetic field
Bo perpendicular to the beam plane |is
F=1-1‘B ,
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where

1=S-(neveqe¢nlvlql)




is the total current (S=nR® is the beam
section) and 1 is the beam circonference The
global centrifugal force on the beam will be
Fe=fc-S-1. Writing down the force balance
equation for a one-species neutralized beam
one gets:

2 2
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By taking into account also the “"hoop"
expandig force the expression for Rc cannot
be obtained anymore in a closed form since

mvn + mvon pi
1 11 [+]
B=g'| 7w +nv ta
< e eqe ] lql
BRC 1l
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being "Ro" the beam minor radius and 1li; the
normal%zed 2inductance per unit lenght and
li=<H¢">/H¢"(Rb) (8] (H¢ 1is the poloidal
field).

COULOMB COLLISIONS

Coulomb collisional effects can be
studied by referring to the long-range and
the short-range collisions.

Let it be considered "test" charges q (mass
m, velocity v, density n)  colliding with
"field" gharges q (mass m, velocity v,
density n }. The relative velocity is u=v-v ;
the present model holds wuntil all the
velocities are almost parallel, then the
scalar notation will be used for velocities
and momenta. The cross-section for long-range
large-angle collision is [8]:

(qq')2 in A
[a e s e
ir 4"c2“2u4
0
where
22 .2

In A= b_.x/bm‘n- A04nc°u u“/(qq )
1s the Coulomb logarithm and p the reduced
mass. By simple mechanical considerations it
can be shown that [8]
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u(t) = (u; - 38t)'"?

where
LI []
{gqg )" InA n
.] A ——————————

2
4nc°u

The solution “"u(t)" ylelds an estimate of the
effect of the long-range collisions on the
colliding beams velocity that is valid until
the energy spread is low (since the
approximation of almost parallel velocitles).
A stability time constants can be defined as
the times at which u(t), v(t) or v (t) reach,
for example, the 90% of their {initlal value.
The short-range collision cross-section |is
simply oir divided by a factor 4lnA.

A collisional rate for short-range scattering
can be readily defined and taken into account
as a loss term (the particless-scattered out
by short-range collisions could be considered
lost).

THE "EXTRAP" HIGH-DENSITY CONFINEMENT

When the high-density regime is reached
the neutralized beam looks like a current
carrying plasma in a toroidal z-pinch
configuration and the confinement cannot be
ensured anymore only by the weak-focusing
effect.

Lehnert’'s multipolar plus z-pinch "EXTRAP"
configuration [10], seems to be naturally
suitable for the conf inement of a
neutralized, high~density, pinched beam. Here
the EXTRAP plasma-induced current could be
replaced by the beam current.

It has been experimentally demonstrated [10]
that EXTRAP shows an excellent degree of
stability with respect to the MHD pinch
disrupting modes.

EXAMPLE

Some of the most important parameters for the
proposed process are calculated in an example
case.

The D-’He reaction was chosen and the basic
features are listed below

Relative lon energy 420 EkeV
Relative ion beam velocity 8.2-10 m/s
Energy released per fusion 18. 3 MeVv

Fusion cross section 7-10% w°
Slow beam energy 10 kev (8-10° n/s)
Fast beam energy 843 keV (9-10° m/s)
Electron beam energy 300 keV (2.3-10 n/s)

Relativistic electron mass 1.58-meo

Assuming a regime lon density of 10*° m-a, a

current for the slow 1lon accelerator of
100pA, a2 5 mm minor radius beam and a 2-m
long ring, the following input parameters can
be found:

Particle species

regime density (m~

9-1¢''f 10° {1.1-10"

injection current (pA) 100 | 200 300




The time required to reach the regime density
is here 2.5 s and z 3.8:100° T external
magnetic field is needed.

The fusion power density 1s 1.68- 10° W/m® and
0.78- 10 W/m - are needed to replace the fuel
burned. So an intrinsic gain of 21.4-1is
obtained. The power density required to
replace all the shgrt range scattered
particles is 7- 10° W/m ., then 1n order to
get the breakeven at least 764 of these
particles must be confined within the beam
The radiated power density is about 10* W/m
(over-estimated).

CONCLUSIONS

A colliding beam fusion concept was
introduced and some fundamental aspect of a
possible experimental device configuration
were discussed.

The proposed approach 1s suitable for the
useof neutron-free fusion reactions. Besides
further theoretical and simulation
investigation, also an experimental activity
for a basic, low-cost feasibility test on the
neutralized beam concept seems worthwhile to
be considered.
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ABSTRACT

The problem of creating a high-density,
high-current neutralized beam in a closed
configuration via a continuous particle
injection and accumulation has been
considered in relation to the research on a
colliding beam fusion process.

The last results, oriented to the development
of a basic neutralized beam experiment, are
discussed.

The theory of resistive wall injection of a
charged particle ring is reviewed and the
application to the simultaneous injection of
electron and ion rings is introduced.

INTRODUCTION

A colliding-beam based fusion process
has been proposed and studied (1-4]); one of
the major 1issues for demonstrating its
feasibility is to provide a technique for an
efficient beam injection in a space-charge
neutralized environment: low-density, 100's
keV-range, electron and ion beams have to be
injected and trapped in a closed geometry.

In order to provide the same equilibrium
orbit for both the electron and 1lons, a
speclal weak-focusing confinement system has
been conceived [3].

By maintaining space-charge neutrality and
through a continuous injection, a very fast
Increase in the circulating beam density
should be achieved, leading to the formation
of a high-density neutralized beam.

The 1injection process has to be effective
from the early stage of the beam formation
(low-density) to the final, high-density
regime equilibrium in order to provide the
necessary compensation for the particles lost
(and "burned" if a fuslon process were
implemented).

In order to accomplish these requirements a
"multi-turn", non-Liouvillian injection
technique based on the axial motion damping
of electron and 1ion rings through image
currents induced in a resistive cylindrical
shell has been envisaged. This technique was
proposed and experimentally tested in the
past for ion and electron rings separately

(e.g. [5-8]). The ©present proposal |is
intended to take advantage of this previous
experience in a new experimental environment.

DESCRIPTION OF THE PROCESS

A focusing~confinement system for
holding electron and ion beams on the same
stable orbit has been conceived [3}]. Then
low-density (compared to a fusion plasma
density)}, counterstreaming, electron and ion
beams are injected in a ring configuration.
Each beam 1is provided with a small axial
velocity in order to miss the injector at the
first turn. The ring motion generates image
currents in a surrounding resistive
cylindrical shell which provides the required
damping (only in the axial direction, (6]).
The final condition is the merging of the two
rings on the same equilibrium orbit resulting
in the formation of a neutralized beam.

THE INJECTION PROBLEM

THE BASIC THEORY FOR THE INJECTION

The fundamentals of theory of the
resistive injection are discussed in (5] and
(6] for the case of a relativistic electron
ring. There the solution of the e.m. problem
and the self-consistent solution of field and
motion equation for the particle ring are
presented. Those results are here briefly
reported.

The following simplifylng assumptions are
made in order to solve the problem
analitically: i) the resistance of the
cylindrical wall can be approximated by the
surface resistivity p, ii) the velocity along
'2' is considered non-relativistic so that
the contribution of 1image charges to the
retarding force 1is negligible, iii) the
current ring is considered infinitely thin.
In order to design properly the injection
system the equation of motion for the
particles mwoving along Sz (the axial
direction of the cylindrical shell) must be
solved with respect to the beam (particle
ring) parameters.

In [6] the 1mage current density j(z,t) on
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the shell is determined in terms of the total
ring current IR by taking into account
self-consistently the motion of the current
ring along "2".

Due to simmetry reasons the only
non-vanishing components of the
electromagnetlic fleld are Br, E¢, Bz.

THE RETARDING FORCE ON THE PARTICLE RING

The force on each electron due to the Br
component prqguced by the image current on
the resistive shell \is:

Fn = -e v¢ Br

In the case the cylinder resistance can be
approximated by the surface resistance the
force depends only by this last quantity,
(i.e. the product of the conductivity ¢ and
the thickness “d", or ¢-d=d/p ).

It can be demonstrated that, within the
hypothesis made, the {image charge gives a
negligible contribution to the total force on
the injected ring so Fx is the only force
component that will be considered [6].
According to [S], for the case of a thin
cylinder with and ring motion close to the
wall the following expression for Fu can be
derived (written here in MKSA units):
m r N 2¢cp/377v 7
F = - e 0 e z z

"

2rRa 1+ (2cp/377v 7 )2
2 2

where me 1is the electron mass, ro the
classical electron radius, Ne the number of
electrons in the ring, R the ring radius, “a"
the distance of this last from the resistive
shell and 377=(u /¢ ) 1s expressed in Ohm.

THE EQUATION OF MOTION FOR THE INJECTED RING

"The equation of motion along “2" for one
electron (belonging to the particle ring
producing the image current on the shell)
writes as:

Tmov = F"

where 73[1-(v¢/c)21“‘/2

that vaave.

Furthermore if electric acceleration in the
2z-direction ls assumed, then the transverse
momentum 1s a constant of motion and it
follows:

in the hypothesis

[ 0 - a1y /n2y"172
v¢ = Ve T2 Vg =v¢(t-0), 7, (1 v./c )
Assuming 72=1 it comes

. 11w /1217172
=1 (v¢/c)]

By substituting the expression of Fu it comes:

2
. N.roc 377vz/2pc
v = -

z

v2nRa 1+ (377vz/2cp)2

This equation integrated by variable
separation ylelds:
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This last equation gives (implicltely) the
trend vs. time of the 2z-velocity of the
particle ring with respect the injection
parameters.

THE STOPPING LENGHT

An important design quantity 1is the
"stopping lenght” required to bring the axial [
ring velocity to =zero (reaching then the
equilibrium position). i
By dividing the eq. of motion by vz=dzr/dt it
is obtained:

dv 377r N ¢ 1
z _ _ 0 e

dz_ 74 pRa 1 + (377vz/2’cp)2

Integrating by variable separation and
imposing vz=0 the stopping lenght Lst=zr-2ro
is found as

3

> v o 377ro N c
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(see eq. (38) [S5] or eq. (21) in {6]). Then:
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In the more general case of v¢#c the
expression of Lst has to be divided by v¢/c.
Then, finally, by considering that the ring
current is given by:
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while the ciassical electron radius is
2 1
e
s 2 2 ,
4ne mcC
0o e
it is obtained
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It is important to notice that the dynamic of
the particle due to the retarding force does
not depend on 1its mass, ‘so the stopping
lenght for both lons and electrons which are
in the same current ring are the same. The
quantity me in the equation of Lst comes,




throught expression of the magnetic field
produced by the ring current, from having
imposed that the electrons are confined with
a glven Larmor radius.

THE EXTERNAL CONFINEMENT FIELD

ELECTRONS AND IONS WITH THE SAME LARMOR RADIUS

A vertical magnetic field (with respect
the orbit plane) keeps the ions onto a
circular orbit. A weak-focusing field profile
gives them the required stability.
When two ion species are considered, if they
are of different masses (like in all the most
efficient advanced-fuel fusion reactions as
well as the D-T one) it is possible to choose
the velocities of the two species in order to
both maximize the fusion cross section and
making equal their Larmor radii.
However the electrons will have in general a
much smaller Larmor radius then the ions. The
only way to keep them rotating on the same,
"reasonable" size ion orbit (i.e. in the
order of the meter) is to use relativistic
electrons.
By 1imposing the equality of the 1ion and
electron Larmor radii it comes

T m v
(-] e
= 2=1
r m v
Lt [
where
0
m=1m‘°= zczvz
(1-v©/c%)
e
so it comes
2.2 2 2
cm v c
v = ! =
[ 2 2 2
2 2 2 2 2 m 2 c
mv + ¢c m_2 0
( [ 0 ) 1+ ——%—7;———
m v
[

The corresponding electron kinetic energy
will be then

W o= (r-1)m_c2

e e0

For the fusion process which it is referred
to [(1-4]) using relativistic electrons with a
few MeV energy would be unacceptable from the
overall power gain (since electrons have to
be supplied as well as ions to compensate the
particle losses).

THE "CORRECTED LARMOR RADIUS" CONFIGURATION

In order to maintaln electrons and ions
on the same orbit wlthout being forced to use
relativistic electrons a special focusing
system was concelived [(3].

A vertical magnetic fleld B produces a
deflecting inwards radlal force, as usual.
The electron Larmor radius is however much

smaller than the lon one (more than one order
of magnitude with the parameters here
considered) and the neutralized beam could
not form since the injection phase.

A radial electric fleld 1s then introduced
(fig. 1). The additional radial force
contribution acts in opposite ways ‘for ions
and electrons. Therefore by choosing proper
values for E and B, the same equilibrium
orbit for both ions and electrons can be
imposed.

In the most general case, considering two
species of charged particles with given
charge qe.i, mass me,1 and velocity ve,t, the
force balance equations for equilibrium
orbits with radius Re,! are:

2 =
meve/Re queB + qu

2 -
m!vl/Rl- qlle + q‘E
then

R =m v° /q (E+v B)
e e e e e

.2
R‘-mlv‘ /ql(E+le)
By imposing R=Re=Ri and solving for E and B
it 1s found =

m V2 - m Vz
L] eql 1 lqe

B=T=Tqar
vl ve qequ

ml V, qe_ mcveql

v
1 e (vl-va)qlqeR

. Fee _
A v v
Y ve e v
s B
v O
e v 1
F
| Be Foi ) JFF_'

Fig. 1 - External confjinement flelds

For exasmple, if sone assumes (all MKSA units)
v, ==10", v, =10, R=0.05 for electrons and




protons respectively, it comes EEZ-IOS and
the B=1.3-10"

It must be pointed out that the configuration
of E and B here considered do not produce any
ExB drift veloclity on the particles because E
remains always perpendicular to the particle
trajectory. Another way to say this |is
observing that the particle guiding center
will remain always fixed, at the centre of
the ring.

WEAK FOCUSING WITH RADIAL ELECTRIC FIELD

The stability properties of the
weak-focusing magnetic flield profile remain
unchanged with the added electric component.A
charged particle (mass m, charge q) with
velocity v perpendicular to a uniform
magnetic field Bo will find an equilibrium
orbit with radius Ro such that

qvB +mv2/R =0
o o

The frame of reference In fig. 1 s
considered: the equilibrium orbit is at r=Ro,
centered at r=0, the magnetic field has the
direction of the z-axis.

To achieve vertical focusing, for particle
displacements in the "z" directlion, the
magnetic fleld must decrease with r, that is
8B/8r<0, 1like what s produced by two
outwards diverging poles (fig. 2).

[

Centripe tol
Component

Restor.ng
Component

Fig. 2 - Magnetlic weak focusing
To ensure at the same time the horizontal
stability one must {mpose that the
centrifugal force decreases with r faster
than the magnetic one: then a restoring force
component along r will be obtained. This
conditlion is expressed as

aF 8r
_=z < <
ar |r=R ar }r=R
0 0
where (Fm is directed inwards)
=-qvB , F =mv2/r
L] q ' [+
It comes then immediately:
3B mv>
-qv == =
8r |r=R R .
0 0
or
R
__0 8B < ™ oy
B 4dr |[r=R B R q
o 0 ()

By defining the left-hand side of (5) as the
field index "n" and recalling the previously
stated condition &8B/dr<0 for the vertical
focusing (which is equivalent to n>0) {t
comes that the stability of the particle
trajectory will be ensured if 0<n<1, that is
the well-known weak-~focusing condition.

The same considerations will be now applied
in the case of the corrected Larmor radius
configuration.

The equilibrium equation is

2 -
mv /Ro— qvV B°+ q E°

1f 8E/32=0 the vertical focusing will not be
affected by the presence of the electric
field (the electric fleld is only along the
radial direction).

The condition for the horizontal stability
will instead become

oF
-

ar

aF
+ 2

r=R ar
[¢]

8F
< £

r=R ar |r=R
[¢]

0

being Fe=~qE the electric force (Fe must be
directed outwards for the electrons and
inwards for the ions).

Since it is consldered a radial electric
field produced by two coaxial cylindrical
electrodes, then E(r)«l/r which can also be
written as Eér)=EbRo/r, where Eo=E(Ro). So
8Fe/8r=qEoRo/r - and the last equatlon becomes

qu 8B mv2
-qv —— < - 3
Ro ar r=no Ro
or
Eo _ Ro QE_ < -
Bov Bo ar r=R, BoRoq

Rewriting this equation in’terms of the field

index "n" the condition for the weak-focusing
will be now
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B j goRoq

0<n«< -

BASIC DESIGN EXAMPLE

A calculation example is reported for
giving an estimate of the injection
parameters.

Electrons at 300 keV and protons at 100 keV
are considered. Their velocities_  result
respectively ve=2.3e+08 and vi1=4.3-10 m/s.
For 100 keV protons electrons at 13 MeV are
required for having the same Larmor radius.
while for protons at 10 KeV electrons at 3
MeV are needed.

Using low energy protons could be a way for
implementing a neutralized beam, low-cost,
basic experiment to check the main issues of
the proposed approach (injection, density
increase, pinch effect).

For a electr%n bgam injected at 2: 10° mn's,
density S- 10" m , minor radius S mm (then
beam current 0.12 A} major radius 0.2 m,
distance from the wall 0.01 m. wall surface
re;istance 20 Q and axial ("z") velocity of
10" m/s, a stopping lenght of 6 cm is found.
With a ring radius of 0.5 m and distance from
the wall S cm, a stopping lenght of 0.33 m is
obtained.

CONCLUSIONS

A technique for continuous injection of
electron and ion beams and their confinement
on the same stable orblt in order to form a
neutralized beam was proposed.

An experimental background experience which
comes from previous experiments on electron
and ion beams separately can be usefully
applied.

The proposed approach seems suitable for a
low-cost basic experiment.
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ABSTRACT

The Neutralized lon Bernstein Have (NIBW)
sisulation via an electrostatic, two—disensional
hybrid particle-fluid aodel is approached.
Siaulations are cospared and confiraed by already
published experisental results.

INTRODUCTION

Particle sisulation of waves in plasaas, due to
the intrinsic eicroscopic character of the model, is
better concerned with the physics of the particle-wave
interactions rather than with the representation of
the whole wave pattern spatial evolution. This is
particularly true when explicit particle msodels are
used, since in the space discretization the grid cell
size cannot be such larger than the electron Debye
Jenath.
The particle-fluid spproach was developed in orde: to
study plasaa phenomena which are aainly affected by
the ion dynasaics (1]. The high-frequency plasas
oscillations (due to th-‘olectrons) are dropped, the
tise step size is then detersined from the ion sotinn
tism scale and no asnre from the electron one.
Fur thersore the spatial resolution is now linked to
the ion Debye length in place of the electron one.
This aakes affordable problews which otherwise would
require aany thousarvis of time steps and grid cells
p® linear dianrnsion.
Here ions are sisulated as in 3 conventional particle
sodel while no computer particles are used for
electrons; they are considered like a °®fluid” which
saintains everywhere the plassa quasi-neutrality and
their effect is ronsidered only in the field solution
procedure.

THE HYBRID PARTICLE-FLUID CODE ES2HYB

A 2D, ES quasi-neutrsl, hybrid (particle ions,
fluid electrons) sodel is implesented in the code
FS2uve.

An uniforely sagnetized plasas is sisulated. The
sagnetic field is along the norsal directinn (2) with
respect to the (x-y) similation plane.

The Green’'s function <technigue is wused (via FFT
convolution) for a direct solution of the 2-D
electrostatic field.

The fielo solver provides the electrostatic
self-consistent field produced by the particles. The
probles is usually afforded by solving the Poisson
equation (directly, via inversion of the corresnonding
set of finite difference equations, or through a
convolutional eethod by Fourier transfora of the
finite difference operators, see (21} and then by
nuserical differencing the potential in order to
obtain the electric field coeponents.

Here a Green’s function-based field solver has
been developed for the quasi-neutral hybrid
particle-fluid sode]l and no direct reference to the
Poisson equation is sade in the nueerical solution
(the potential nuserical gradient is also avoided).
The electric field due to a umitary 2D charge in the
erigin is considered as the Green’s function (x and Yy
roaponents). Mnre the charge density distribution is
cnllected froa the particle positions the total field
is found after the convolution between the Green’s
function and the charqge density itself. The
erwvolution is quickly performed by seans of » 2D-FFT.
According to (1) the mode! assumes a Boltimann
rquilibrive for the electrons with saall density

fluctuations (a few percent) in order to allow the
linearization of the Boltzmann distribution.

The field solution proceeds as follows: first the
sodified Poisson equation, which takes into account
the electron linearized Boltzaann distribution, is
solved analytically in two dimensions for a wunitery
source in the origin. This gives the Green’s function
for the electrostatic, Debye—shielded potential due to
the ions. Then the Green’s functions for the electric
field x~-y coaponents are found by analytical
differencing.

The Boltzmann distribution for the electron density ne
expanded at the first order writes as:

) b3
n.-nooxp(QVIk-T.) > no( lOQV/\(-T.)

where no is the equilibrius electron density.
By considering a saall perturbation of the ion density
as m=no/2i¢ém the Poi1sson equation becoaes

2
V’VOkDV--QZ‘én‘I:o
2 2 2
where kn-noc /k.‘l’.cosllxb
being Ap the electron Debye length.
Writing the corresponding homogenesus equation for the

Green’s function in cylindrical coordinates and
sipposing the circular symmetry it is found:

2
9 g+l 964k =0
d|,:\!rarv DV

which is a zero-order Bessel equation. It cen be shown
(3] that the Green’s function for this equation, in
the case of an isolated source which is considered, is

6 (r) = Y (k r)/2n

v o o
whei e Yo is the zero-th order Neuaann function (or
Bessel functinn of the second kind) in the argusent
*nDr®,
In order to find the Green’s functions for the
elertric field cosponents it is observed that, since
Ex -V, it comes

2 1 @
B ™~ 3x B " " 5% 3r Yo'k

Then it can be easily found that {31:

1 ] 1
6. " sax Y, ¢ S‘y = 2—")‘. Y 0 yir

where Y1 is the first order Neumann function.

The FFT convolution method used for the field
calculation assumes the periodicity of the systea
which the density and field arrays are referring to.
The code is then intrinsically periodic: the particles
Passing over the dosain border from one side have ¢to
be sade appearing on the other side with the same
velocity.

THFE. SIMAATION RESILTS

It is essential to define a Quantitative
correspondence between the sisulation model and the
real plassa parameters. The cosputer particles can be
chosen with the sase charge-to-sass ratio as real
par ticles, however, typically, the values of both
charge and mass are sany orders of magnitude above the

PIs/




real ones.
The definition of the eaode! paraseters 1s a critical
issue for the reliabtlity of the simulation. A simple
algorithaic procedure which finds the i1nput data frrm
the real plasaa specifications has been used [3].
Since the external sagnetic field is
perpendicular to the x-y siaulation plane ion plasma
waves propagate as lon Bernstein scdes. Moreover due
%0 the intrinsic quasi-neutrality of the wsocdel
considared, only the Neutralized IBW occurs. In the
case of NIBW in fact the electrons are able to perfora
a sort of neutralization rearching a  Boltzsann
equilibriua with the wave potential (&), IS1.
The propagation nf NIBW mndes can be seen in a narrow
angular reqgion very close to 90° w.r.t, the sagnetic
axis. A 2D-3V (1.e. two-and-half dinensional) wasodel
wild he appropriate for exploring the anqular
dependence of the sode propagation.
The first results on the NIBW similaticn were shown in
{3). tsre further calculation on the simulation of a
real experisent are reported.
Experisental eeasurements on NIBW were recently
obtained in the LMP (Linear Magnetized Plasma) device
ot TRPP-EPF in Lausanne (4). The simalated (Argon
. - 1
plgm. 48 in the experiasent, has a density of 10
a , Te=ld eV, T\=0.] eV, with an external aesagnetic
field of 0.3 T,

)
?
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Pig. 1 - The eleciric feld epectrum for the mode ¥
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Fig. 2 - The NIBVY dispermion relation: eimulatiorn e
cempared with theory and SRpOrimenty.

These physical conditions give wpi we290. Then, in
order to obtain a sufficient frequency resolution the
siaulation has to be extended over many 1/wc. but at
the same time & time step At’Z1/wp. (4At<(1/wer) has to
be used, as the usual requirement of explicit particle
cndes. Then a considersble nuaber of tiese steps was
maded (2048).

The former simulation results showed in (3] are here
iaproved by increasing the nusber of particles and the
spatial grid resolution.

The code was run on tge CRAY-2 with 128.128 graid
points and 65536 (#2567) particles.

In fig. | an example for the electric field spectrum
(for the 3" gode) is shown. Up to eight modes were
recorded with k=a/2pc\, #=1,2...8.

The dispersion relation is obtained as in f1g. 2. The
experisental results and theoretical curves (both from
{4]) are reported on the same plot for comparison. The
frequency resolution was Awixwci/4.5, 2048 tise steps
with At=2 107" having been used. A very good agreesent
13 found for the first twc branches. The differences
tn the third one are attributed to the still not
sufficiently large scale of the sisulation considersd
so far.

A saxwellian plasaa was initialized through a “quiet
start® technique and a good stability of the thermal
equilibrius was obtained as showed by the final
distribution function in fig. 3 (after about 400
plasaa peiiods). -
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Fig. 9 - Iar dizinibution ot the erd of run

CONCLUSTONS

A 20, ES quasi-neutral ,hybrid particle-fluid
code, was applied to the similation of NiBW.
The hydbrid code exploits a new, rather sophisticated,
field sclver for a linearized, gquasi-neutral, plasaa
acdel. The extension to the non-linear case could be
made straightforwardly by successive field solving
iterations within each time step. Work in  this
direction is in progress. ’
Techniques fo defining correlaticns between the
particle model and the real placma were exploited.
The cheracter of the sisulation results 1s still that
of an approach phase. Anyhow it 1s believed that a
contribute to the ieproveaent of the particle
siaulation sethod reliability and to the progress

towards a closer link with plasea experiments has been
qiven.
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NUMERICAL METHODS FOR SIMULATING
PROCESSING PLASMAS

V. Vahedi, M. Surendra,
G. DiPeso, J. Verboncoeur
University of California, Berkeley
Berkeley, CA 94720

RF glow discharges and other processing plasmas are used extensively in the microelec-
tronics industry. Self-consistent fluid equations have been used recently to study the structural
features of RF and DC glows'”. However, since these discharges are inherently complex and the
particle distributions are non-Maxwellian, there has been a considerable effort in developing
self-consistent kinetic models without making any assumptions on the distribution functions**.

’

In order to use particle-in-cell simulation codes for modeling collisional plasmas and self-
sustained discharges it is necessary to include interactions between charged and neutral particles.
Monte Carlo methods have been used extensively in swarm simulations®**. In many Monte Carlo
schemes, the time (or distance) between collisions for each particle is calculated from a random
number. This allows for efficient algorithms, especially when the null collision method is used®.
This technique is however, not compatible with PIC simulations, since all particle trajectories are
integrated simultaneously in time. Thus, the collision probability for the ith charged particle is
calculated, based on the distance As; = v;,Ar traveled in each time step At, to be

P;=1-exp(-As,0,(E))n)

where o7 is the total collision cross section, E; is the kinetic energy of the particles and n is the

neutral density. A collision takes place if a uniformly distributed random number on the interval
[0, 1] is less than P,. The null collision method can be incorporated into the collision model by
picking a constant collision frequency v’ such that,"!

4
v 2nvo,

Thus, the computational cost of calculating P; can be avoided. The fraction of the total
number of particles (chosen at random) in the simulation that experience collisions is given by

P =1—-exp(-V'Ar)

The collision is assumed to take place at the current position of the particle. It should be
noted that the choice of Ar will affect the accuracy of the collision model. For instance, As; should
not be much larger than simulation length scales of interest (e.g. grid spacing, A,,) and As;6.(E)n
should be about 0.1 or less’”. Once a collision occurs, the type of collision, the energy of the
ejected electron (for an ionizing collision) and the direction{s) are determined with new random
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numbers. These quantities are related back to the system coordinate axes. The procedure for
electron-neutral collisions is describe in detail by Boeuf and Marode'®, and by Thompson et a/™
forion-neutral collisions. Expressions for differential cross sections that are analytically integrable
are useful as the computational cost of determining scattering angles and energy redistribution in
ionizing collisions is minimized* "%,

A Monte Carlo collision handler as described above, including the null collision method,
has been developed as an addition to the PIC scheme as shown in Fig. 1. The full three dimensional
character of a collision is modeled with three velocity components. The neutrals are assumed to
be uniformly distributed between the boundaries with a constant density and a Maxwellian profile.
The model is still valid if the neutral density is a weak function of position and time (small variations
across the mean free path and collision times). This scheme can also be extended to model Coulomb
collisions between charged particles.

Integration of equations Monte-Carlo Collisions
of motion, moving particles V —V

F‘ — V:—» !i

Woeighting \:;D Waeighting
(E.B)—~F

: (x,v), = (p. J),
Integration of field
equations on grid
(pd), = (EB),
FIG. 1. The flow chart for an explicit PIC scheme with the addition of the collision handier, called

PIC-MCC*.

RF discharge modeling displays many physical time scales, e.g. 6 € @,.. With a PIC

model including an electrostatic response, the highest frequency that must be resolved by the
explicit numerical methods used to solve the particle and field equations is w,,. If w,Ar>1,
numerical instabilities can occur for explicit methods™. To observe the physics of interest, one
needs to resolve th RF timescale only, and therefore much computing time is wasted resolving
the plasma oscillation time scale.

Implicit particle simulation' has been developed to relax the numerical stability constraint.

We will now briefly review implicit particle simulation techniques. Implicit particle movers
advance the postion of the ith super particle by the equation

x:nl = afEnol(xin+l)+x-r_|¢l




where ¥ is the portion of the position advanced, dependent on quantities known at present and
previous time levels, @ = BAr’q/m, and B depends on the particular implicit scheme. The field
ata particle location is interpolated from the field known at the grid in space. Note that the particle
location at the future n+1 time step depends on the field at that time step, but the field at the future
time step depends on the particle location at that time step through the Poisson equation.

n+l

One way to get around this problem is to linearize the locations x"*" about the locations

~n+1

X7"" in the superparticle-to-grid weighting equations. Then
pn+l = ﬁn-«»l _ax[§n+laxn+l]

=n+1

where p"*! is determined by weighting superparticles at X7 *' to the grid. The minus sign is from
the functional dependence of the particle positions in the superparticle-to-grid weighting equations.

Strictly speaking, & *' =x/*' -’ *! is an individual quantity for each superparticle and js given
by the advancing equation. Instead, &x"*'=&"*' = o’E"*', i.e., the perturbations are taken to
be grid quantities while maintaining the form as given by the advancing equation. Inserting the
above form of the perturbation into the equations for the density and combining with the Poisson

equation gives the numerically implicit Poisson equation

aX[l +aﬁn+llax¢n+l =_§n+lleo
where o = ot'/g,,.

The equation is solved on a spatial grid. Simple boundary conditions for the RF discharge
are a zero potential at the left wall and an RF source voltage at the right wall. The electric field
is found at the interior points by central differencing the potential. The electric field at the walls
is given by a numerically implicit Gauss’ law which is the integral form of the numerically implicit
Poisson equation. The electric field, at the left wall for example, is then derived by taking a
Gaussian pill box about the wall,

(1= @P)E], .\, = Ofeq + PoAx /2,

The enclosed charge (RHS) includes the wall surface charge density 6, = £,E, where the 0 subscript

indicates the left wall quantity and j=1/2 indicates an evaluation between the 0 and 1 grid points.
It is then possible to solve for the electric field on the left wall. A similar proceedure is used for
the right wall. The equations may be generalized to included more complicated boundary con-
ditions including external circuit elements.

Many accuracy constraints still remain. One important constraint is that the fastest particle
species should resolve spatial gradients in the field, i.e., vy, At/s < 1 where s is the gradient length.
Another important constraint is that all particles should sample the field on the grid in a continuous
manner over a single time step. This gives v, Af/Ax < 1. A problem with implicit methods is
excessive numerical cooling which is due to poor sampling of fast particles in simulations with
large time steps. Resolving fast particles is particularly important in RF discharges because it is




the fast electrons which maintain the discharge through ionization collisions with the neutrals. A
possible way out of this problemis to do multi-scale® simulations. That is, the few fast electrons
that maintain the discharge may be pushed with a small time step while the remaining slow particles,
essentially residing in the bulk plasma, may be pushed with a large implicit time step.
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XGRAFIX: AN X-WINDOWS ENVIRONMENT
FOR REAL-TIME INTERACTIVE SIMULATIONS

V. Vahedi, J. P. Verboncoeur,
and C. K. Birdsall

University of California, Berkeley
Berkeley, CA 94720

We have developed a real-time user interface environment, XGRAFIX, for simulations
running under X-Windows. XGRAFIX is written in C in an object oriented style, and since it
uses only the lower level X-Windows function-calls, it can be compiled with any superset of
X-Windows, e.g. Motif, and is compatible with many systems. XGRAFIX allows the user te
display multiple diagnostics and view them as they evolve in time. Like most other X environments,
XGRAFIX provides keyboard and mouse supports. The simulation codes are structured as shown
in Fig. 1.

|

XGRAFIX
Event Manager|

INIT

Physics
START y Refresh
Kernel Screen
Figure 1. Schematic representation of the interaction between XGRAFIX and the physics

kernel.

The physics kernel is portable to any machine supporting standard C. The INIT module
scans the input file containing the physical parameters of the problem and initializes the diagnostic
windows. INIT also sets up memory for array storage. The environment provides hooks for the
physics kernel to run continuously (there is no time limit - the code can run indefinitely) or step
through individual timesteps. The windows are refreshed each timestep, and all user requests are
processed by the XGRAFIX Event Manager. When the simulation is in the running state, the
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EventManager isinvoked at each time step to process the events; if not running, the Event Manager
is constantly invoked. The events include moving, resizing, and iconifying windows as well as
mouse button clicks and keyboard inputs. XGRAFIX also supports PostScript output of the plots.

The environment currently offers three types of plots: linear, semi-log, and scattered.
XGRAFIX provides the user with menus, dialogboxes, and smart windows. Each window has
(currently) four standard buttons for rescaling the graph, viewing traces of plots, PostScript output,
and a crosshair for measurements. The menus, dialogboxes, and the mouse make the environment
especially user-friendly.

XGRAFIX is being currently rewritten in C++ which offers pre-defined classes and hier-
archies used in the object-oriented style for such objects as buttons, menus, windows, etc. This
modification should make it easier to handle future additions to XGRAFIX. We are also adding
optimized three dimensional plotting routines to the environment which will make XGRAFIX
even more useful for 2D and 3D simulations.

’

We are presently running three of our codes, ES1 (Electrostatic 1 Dimensional periodic
plasma simulation)’, PDP1 (Plasma Device, Planar 1 Dimensional)* and PDP2 (Plasma Device,
Planar 2 Dimensional) in XGRAFIX.

This work will be presented atthe 14” International Conference on the Numerical Simulation
of Plasmas.

1. C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation (McGraw-Hill,
New York, 1985; Adam Hilgar, 1991).

2.1 J. Morey, V. Vahedi and J. Verboncoeur, Particle Simulation Code for Modeling Process-
ing Plasmas, Bull, APS, 34 2028 (Abstract 1989)




A C . ¢ PIC Simulati 1 Experi | Resul
in a Capacitive RF Discharge,' P. MIRRASHID], B. P. WOOD, V.
VAHEDI, M. A. LIEBERMAN, and C. K. BIRDSALL, EECS Dept.
University of California, Berkeley - Simulation results from PDP1,
a 1d3v bounded particle-in-cell code,? are compared to recently
published experimental results® over a pressure range of 10-100
mTorr and 100-1000 V applied RF voltage in a symmetric, parallel
plate, argon discharge. We show that where similar results are
obtained, the simulation allows insight into plasma parameters which
are not experimentally accessible, such as details of the electron
power sources and losses.

1. Work supported in part by the ONR, DOE and NSF.

2. Available from C. K. Birdsall, Plasma Theory and Simulation
Group, EECS Dept., UC Berkeley.

3. V. A.Godyak, and R. B. Piejak, and B. M. Alexandrovich,
. IEEE Trans. Plasma Sci., August 1991.

An Analvtic Model of the Ton Angular Distribution Functi
i i -ollisi ! M. A.LIEBERMAN, V. VAHED],
R. A. STEWART, University of California. Berkeley - An analytic
model is developed that predicts the ion angular distribution function
in a highly collisional sheath. In a previous study?, the normal ion
velocity distribution was obtained under the assumption that
charge-exchange is the dominant ion-neutral collisioh mechanism.
In the present model, we assume A, > A,,, where A, and A, are the

mean free paths for ion-neutral scattering and charge-exchange
collisions, respectively. With this assumption, we consider the
angular distribution to arise mainly from ions that strike the electrode
after undergoing only one scattering collision following the last
charge-exchange collision.

1. Work supported in part by a gift from Applied Materials, Inc.
and a grant from the California Office of Competitive Tech-
nology.

2. V. Vahedi, M. A. Lieberman, M. A. Alves, J. P. Verboncoeur,
and C. K. Birdsall, J. Appl. Phys., 69 2008 (1991).

). V. VAHED], M. A.

LIEBERMAN, G. DIPESO, C. K. BIRDSALL, University of Cali-
fomia, Berkcley, T. D. ROGNLIEN, J. R. HISKES, and R. H.
COHEN, Lawrence Livermore National Laboratory- We are
combining a particle-in-cell (PIC) model for particle and field
dynamics with a Monte Carlo collision (MCC) scheme to model the
collisions between the charged and neutral particles. The MCCmodel
can also be extended to model Coulomb collisions between charged
particles which tends to be significant at very low temperature
discharges. These models are incorporated into PDP1, a bounded
one dimensional plasma simulation code. As a specific example, we
consider oxygen RF discharges at various neutral pressures and RF
voltages. Electrons, O,*, 0, and O are evolved as partilces. These
models can be used to model other processing discharges.

1. Work performed for USDOE by LLNL under contract
W-7405-ENG-48; a portion of the UCB work performed for
INSF under grant ECS-8910827.

GEC




Theory and Simulation of Sheath Waves in Bound-
ed Plasmas, * X. Q. Xvu, G. DiPeso, V. VABED!, AND C. K.
BIRDSALL, University of California, Berkeley—Sheath waves have been
investigated analytically and with particle simulation for an unmagne-
tized two dimensional plasma slab with periodic boundary conditions
in y and conducting walls in x. Analytically treating the sheath as a
vacuum layer, the sheath wave bears a resemblance to plasma vacuum
surface waves. The simulations are in good agreement with the theory
for both bulk Bohm Gross waves and edge sheath waves. We have also
simulated a magnetized plasma in both the pure (PIBW) and neutral-
ized (NIBW) ion Bernstein wave regimes to look for sheath waves in
these cases. For PIBW and NIBW, the jons are fully magnetized while
for PIBW, the electrons are treated as a background and for NIBW,
they are treated in the drift kinetic approximation. Ultimately, we want
to do magnetized simulations to gain understanding of the impurity and
edge heating problem for ICRF experiments.

*This work was performed under U. S. Department of Energy Contract
DE-FGO03-90ER54079.

A Particle in Cell Code with an Atomic Physic-
s Model for Simulating Processing Plasmas, * V. Vagebl,
M. A. LIEBERMAN, G. DIPEso, C. K. BirDsALL, University of Cal-
ifornia, Berkeley, T. D. RoGNLIEN, J. R. Hiskes, R. H. COEHEN,
Laurence Livermore National Laboratory—We are combining a particle
in cell (PIC) model for particle and field dynamics with a Monte Carlo
(MCC) scheme to model the atomic physics of particle collisions with a
background neutral gas. These models are incorporated into PDP1, a
one dimensional bounded plasma simulation code. As a specific example,
we consider oxygen RF discharges at verious neutral gas pressures and
RF voltages. Electrons, OF, O~, and O are evolved as particles. These
models can be used for other processing discharges. Due to the varying
time scales of electric field and collisional dynamics, discharge equilibri-
um is difficult to reach in the simulations. We will discuss methods to
acheive equilibrium more rapidly.

*Work perfomed for USDOE by LLNL under contract W-7405-ENG-48;
a portion of the UCB work performed for NSF under grant ECS-8910827.

Scrapeoff-Layer Instabilities Driven by Tempera-
ture Gradients and End Loss * R. H. Coren, LLNL; X. Q. Xv,
U.C. Berkeley—We have performed a kinetic analysis of an instability!
driven by electron temperature gradients in the presence of end loss, and
examined its applicability to tokamak scrapeoff layers. This instability
is strong enough that it could set the width of the scrapeoff layer. In
addition to kinetic effects, our analysis adds secondary electrons, recy-
cling, energy endloss and (where appropriate) electron Landau damping,
and additional finite-gyroradius terms. The dispersion relation is un-
changed significantly by the transition from a collision-dominated fluid
regime to a more collisionless kinetic regime, so long as the ordering !
vt/ Ly << w << ve/ Ly and a lower bound on collisionality are satisfied,
but the energy endloss introduces a threshold in Ly /Lr. The atomic-
physics corrections reduce growth rates and raises the threshold. We
re-analyze the mode with alternate orderings. For realistic parameters
the ordering expansions are marginally justified; furthermore, axial gra-
dients in equilibrium quantities are significant. For these reasons, and
to begin to assess nonlinear effects, we have developed a 2D gyrokinetic
simulation model. We report analytic and simulation results for DIII

and ITER parameters.

*Performed by LLNL and UCB for USDOE under Contracts W7405-

ENG-48 and DE-FGO03-90ER54079.
1H. L. Berk et al., Phys. Fluids B 8, 1346 (1991).
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Hybrid particle-fluid simulation of magnetized ion plasma-
sheath waves. A. Tarditi, EECS University of California at Berkeley,
Berkeley, CA (USA). A 2D electrostatic particle-ion, fluid-electron code
has been developed for studying ion waves in a magnetized ion-sheath
region close to an absorbing conducting wall. A semi-infinite plasma
slab model is considered, x-bounded and y-periodic. In a hybrid model
the particles (ions) are advanced on the ion time-scale while a fluid-like
electron component is simulated by providing an analytic expression
for a non-uniform density which takes into account the overall effect
of the guiding center electron diffusion. Then in the sheath region a
non-Boltzmann electron density profile (function of the plasma
potential), which is eventually merged with the Boltzmann distnbution
in the "bulk" plasma region, is considered. An iterative field solver for
a non-linear Poisson equation has been implemented in the code, so
virtually any expression of electron density profile vs. potential can be
considered.

Work supported by NATO Advanced Fellowship Program, US DOE contract DE-
FG03-90ER 54079 and US ONR contract no. FD-N00014-90-J-1198

Merging-code approach for realistic simulation of plasma

experiments. A. Tarditi, EECS University of California at Berkeley,
Berkeley, CA (USA). A merging-code approach for complex, space-
time multiscale simulation of plasma experimental devices is proposed.
This study is particularly oriented to the Numerical Tokamak
eXperiment (NTX) project. Different codes, operating on different
space and/or ime scales as well as dealing with different sets of physical
parameters, run at the same time while sharing and exchanging
interactively their I/O data fluxes. The information interchange is
performed through physical quantities (i.c. density profiles, current
distribution, etc.) rather than through numerical quantities (like com-
puter particles) which are code-dependent.
Physics and Computer Science issues relevant to the development of a
multi-task integrated simulation are discussed. The features of a
versatile software environment (shell), based on a merged-code stan-
dard shell communication protocol and provided with a modular
structure which allows the use of even previously written codes, are
described. A simple simulation example is also referenced.

Work supported by NATO Advanced Fellowship Pro ., US DOE contract DE-
FGO03-90ER54079 and US ONR contract no. FD?NOOOg;T-n%J-l 198

' Ion-Temperature-Gradient Modes in Non-Circular
: Geometrv.* D. Hua, X. Xu, and"T.K. Fowler, UC Berkeley.

- — A 13-D linearized gyrokinetic code employing a &f particle

. algorithm for ion temperature gradient mode calculations is ex- .

" tended to non-circular cross-section to study scaling with the
elongation x. The growth rate, wave numbers and stability

thresholds are calculated for x ranging from 1 to 2, for a flat -

density profile characteristic of H-mode operation. Calibration :

with a hot-ion H-mode shot in DIII-D gives fair agreement be- .

: tween mixing length estimates of x; derived from the theory and .
. experimentally-derived values. Agreement requires taking into
“account T, < T; in the core, which reduces x; near the axis.
. However, the theory fails to account for the strong dependence

" on x at fixed q implicit in empirical scaling laws for the energy -

_ confinement time.

*Supported by U.S. DOE Contracts DE-FG03-89ER5116 and
DE-FG03-90ER54079..




(5861) 1L¥Z ‘99 "I1NT "A%Y "skyq ‘oqpunred "W ‘reD Y ¢

‘1661 LZ-¥Z QIR ‘ohxof, A191005 [wotshyd uedep o) jo Bupsapy oYy e pajudsary ‘nrewyd] °§ JaqeyiRYY, °f ¢
‘UOIJRPUMO,] IUIIG [euoiieN

3y} pue 2oualG Jo uoyjowosd Y3 ioj K3pog weder 3y3 Aq pajsoddng -eiedQ °g ‘rmoPA] "H ‘nrewsyd] °g sioyeioqe[[o),

-vorjendurod aqrered ySnoryy suwrayss sa8re Yonur m
Sureap IoJ s3dadsoxd ayjy se [[om se ‘pIssSNISIP Iq [[Im swse[d u0j0i1d-Uo13I3[3 Y] 03 PUR SJUIW[I d[[e}d3W IIY}0 0] poydut
a4} Jo suorsudjxy ‘rejour pmbyy pue prjos 3Y3 Yjoq 0} pAUEIqO U?Q AvY Suppw puv uoisnyIP-J[9% dTuUot ‘uoije[ailod-ojne
£3120[2A TUOf ‘suOHIUMY uOIINQUISIP [RIpPeI ‘UofjRIQIMbI [ULIaY) Jof Simsal ‘sSuot WMIPOS $G JO UINSAS [apowl © JOJ °Suof
Y3 Joj wayds sarureufp-reMIdour [euoljIpeI) v 03 pa1dnod ‘suorjenbs RButpaonids 3y} jo UCHIN[OS Y3 J0j PISH ST IWIYIS
rerysadsopnoesd v *suo1jda[d URIM)IQ UOIR[ILIOD puv a8ueydX9 resqwerpIw-wrnjuenb [eI0] se [jam se ‘UOIIIRIAUL I11LIS0IIIII
s8ueI-Suo| Yjoq Joj sjumoade YIMYM ‘rerjuajod aafdayd we up Jurajoad suoijenba 8urpaoryag 3pijred-suo £aqo e[ Y],
*gSUOTIIUMJIARM [QUOISUIUITP-93IY] JO 338 © £q Kem pedrueypIur-umjuend A[my ¢ up pajudsazdal are SUOIIYR Y} ‘uofyow jo
sMe[ 8,U0IMIN 03 Surpi0Iow 2A0UX SUOT IYI I[YM -(seurse]d ajersualap ‘pafdnod-A[3uoss pue spejaul urapour jo wire 3y Yiim
‘padojeasp ua3q sey SUCIIIII jvIIUITIp A[ySry pue suof [edisse(d Jo sWIISAS Jo uorje[MIs Yy Jof JwdYds sajdpunid-1sIy Y

("uyu gg) “ohxog, jo Ays1arun ‘YIAVHTIAHL T
‘seursu[ g 2jwaouao@-A[Y31H pue s[RI pinbig Jo suonwnuulg satwvUA-Iv[naIIoy-wnjuLnd)

1661 IdquaoN 8-
£100g [WIIsAyJ uedUIWY
943 Jo Burjd ‘eplio] ‘edwre], Y3 Ioj

1ade 1 naitanr ae 10t 1IRIISOW




IV. WORK NOW IN PROGRESS

Vahedi, V., and G. DiPeso, ‘‘Direct Implicit Multi-Time Scale Particle Simula-
tion for Modeling Discharges’’

G. DiPeso, *‘Some Ideas on @, At >> 1 Particle Simulation’’

Mirrashidi, P., B.P. Wood, V. Vahedi, and G. DiPeso, ‘‘A Comparison of PIC
Simulation and Experimental Results in a Capacitative RF Discharge’’

DiPeso, G., and V. Vahedi, ‘‘Progress on PDP2, A Two Dimensional Bounded
Particle Simulation Code’’

Xu, X.Q., G. DiPeso, V. Vahedi, and C.K. Birdsall, ‘‘Theory and Simulation of
Plasma Sheath Waves™’

Ishiguro, S., ‘‘Progress on Conversion of ES2B to Xgrafix’’
Gee, C., ‘‘Progress Report: RZ Project”’

Chao, E.H., and CK. Birdsall, ‘‘A New Approach to Traveling Wave Tube
Simulation and Design’’

Tsung, F.S., J. Trulsen, V. Vahedi, and C.K. Birdsall, ‘‘Simulation of Potentials
Created by Particulates in RF Discharges: Residence at the Sheath Edges”’




Direct Implicit Multi-Time Scale Particle Simulation for

Modeling Discharges

Vahid Vahedi and Gregory DiPeso

September 30, 1991

Abstract

In recent years particle-in-cell techniques with Monte Carlo collisions have shown to be of
great use in modeling discharges and processing plasmas [1] [2] [3] [4]. A better understanding
of these plasmas, e.g. RF driven discharges, has enabled us to device a scheme to optimize the
modeling code. It will be shown how direct implicit particle simulation [5] and multi-time scale
scheme [6] are incorporated into the bounded one dimensional plasma simulation code PDP1 in

order to relax the wy,.At time constraint.

1 Introduction

In planar RF discharges, a plasma is bounded between two parallel plates and is driven by an
external source as shown in Fig. 1. The electrons responding to the instantaneous applied field gain
energy by colliding with the moving sheath, and the electron distribution develops a high energy
tail. A typical electron energy distribution function is shown in Fig. 2. Although the population
of the high energy tail is down by several order of magnitude from the bulk plasma population, it
is the electrons on the tail of the distribution which overcome the ionization threshold to keep the
discharge alive through ionization collisions with the neutral particles. In modeling discharges, one

must pay s careful attention to resolve the orbit of the high energy electrons accurately.

With a particle simulation model based on an electrostatic plasma response, i.e. particle equa-
tions of motion coupled to the Poisson equation, the highest frequency that must be resoived by
the explicit numerical methods used to solve the particle and field equations is wp,. That is, if
wpe At > 1, numerical instabilities can occur [7]. Direct implicit particle simulation [5)] relaxes the
wpe At time constraint. However, The temptation to use a larger At is foiled because the accuracy

condition vAt/Az < O(1) would be violated for the fast electrons. The poor sampling of the fast




electron orbits may lead to numerical cooling of the high energy tail of the distribution making it

impossible for the electrons in the model to reach ionization threshold.

A multi-time scale scheme is deviced to allow the fast electrons to move with a small time step
while the majority of the electrons in the bulk plasma are pushed with a larger implicit time step.
We will now review the direct implicit particle simulation and describe the multi-time scale scheme

in the code.

2 Direct Implicit Particle Simulation

Direct implicit particle simulation will now be presented for the case of a one dimensional unmag-
netized electrostatic plasma. Following Langdon, Cohen, and Friedman [5], implicit particle movers

advance the particle position by the equation
I”+l - BAt2aﬂ+l +in+1, (1)

where z is the portion of the position advance dependent on quantities known at time level n and 8
depends on the particular implicit scheme. Now let the electric field E be defined on a spatial grid.
Then,

an+l - qE"+l(z"+1)/m, (2)

where weighting, e.g. linear, NGP, etc., would be used to determine E at particle location z"+!

from E on the grid. Combining Eq. (1) and (2)
zn+l = a'En+l(zn+l) + .‘E"'H, (3)
where o/ = BAt3g/m.

Note that a logistical problem with the implicit method is that E"+! depends on p"*! which in
turn depends on the particle locations z"+!. Unfortunately, all of the particle locations depend on
E"*!, One way to get around this problem is to linearize the locations z"*! about the locations

£#"*1! as in Reference 1. Then p™*! on the grid is written as
pitl = 4 5", (4)
where 5"*! depends on #"+! and
§pmH = —a, [ 16z ). (5)

Equation (5) is derived from linearizing the particle to grid weighting equations about #"*!. Strictly

speaking, 6z"*! = z"*+! — #"*+! js an individual quantity for each particle and is given by Eq. (3).




Instead, §z™*! is approximated as a grid quantity while maintaining the form as given by Eq. (3).
That is,

6zn+l - Q'E"+l- (6)

Equations (5) and (6) may be combined and then substituted into the right hand side of the Poisson

equation to get an implicit version
3,[1 + aﬁ"+1]3,¢"+l = _‘ﬂ+l/€0’ (7)

where a = a'/€o. The j terms are determined by weighing the Z terms to the grid.

3 Implicit Particle Advance, Field Solve, and Boundary
Conditions for RF Discharge Modeling in PDP1

There are several possible implicit finite difference approximations to the particle equations of mo-

tion. Here, Friedman’s adjustable damping scheme is chosen [8]. The scheme is

™ = 2" 4 Aty (8
o2 = =12 4 Atla™t! 460" /2 + (1 - 6/2)A" 7% /2, (9)
A""% = (1-6/2)a"" ' +04"-3/2, (10)

where g™ "+! = gE™"+1(z™"+1) /m is the acceleration of the particle which is found by interpolating
the field known on a spatial grid to the particle location. The A terms are the lag accelerations
which damp high frequency oscillations. 8 = 0 gives no damping and 8 = 1 gives the D1 scheme.
For this scheme, 8 = 1/2.

Equation (7), the time implicit Poisson equation, was written for a single species. For multiple
species, Eq. (7) is generalized to
83[1 + x]0:¢ = —p/eo, (11)

where the n + 1 superscript is suppressed and
pj= zaqzi,jvvj(i)v (12)

x; = T.(q* At?/2meo) T ;W; (). (13)

As in the previous section, # is the portion of the advance dependent on quantities known at time
level n. The W terms indicate weighing particles to the grid. The finite difference version of Eq.
(11) is

(14 xj-1/2)8-1 = 24 Xj-172 + Xj41/2]85 + [1 + Xj4172]8541 = —Az>5; /o, (14)




where Xj+1/2 = (x; + Xj+1)/2, J = 1,2,...,nc— 2,nc — 1, and nc is the number of grid cells. For
the RF discharge, left plate is biased at the RF source voltage and the right plate is referenced to 0
potential. This gives ¢j=0 = Vrr(t) and ¢j=n. = 0.

The electric field at the interior grid points can be determined by the finite difference version of
E = - :¢’ i.e.,
E; = (¢j-1— ¢j+1)/(2Az). (15)

At j = 0 and j = nc, an implicit Gauss law must be used to determine the field. An implicit Poisson

equation can be written in vector notation as
V(14 x)E = p/eo. (16)
The integral representation of Eq. (16) gives the implicit Gauss law:

/s(l + x)E - dS = Q/eo, 17)

where Q, the approximation to the enclosed charge, is due to § and the surface charge density.
Drawing a Gaussian pillbox for Eq. (17) around the left wall and spanning the distance j = —1/2
to j = 1/2 gives
[(1 + x)E}j=1/2 = 0o/€a + poAz/2¢q, (18)
where oy is the wall surface charge density. Inside the perfectly conducting wall, Ej<o = 0. At the
wall, Gauss law gives Ej-¢ = do/€o. Substituting this expression into Eq. (18) and solving for E;=o
gives
Eo = [(14 x1/2)(¢0 — 1)/ Az] — poAz/2¢0, (19)

and similarily, for the right wall,
Ene = [(1 4 Xnc-1/2)(€nc=1 — @nc)/AZ] + pncAZ/2¢0. (20)

Finally, it is assumed that if # penetrates the wall, then the particle’s final location will be in the
wall.

4 Numerical Procedure for Direct Implicit

The numerical procedure for direct implicit simulation without multi-time scale scheme is as follows.

o Take the particle quantities z", v", a"~1, A"~3 and the grid quantities E®, ¢", p" as known.

e In the prepush for each species, calculate A"~? using Eq. (10), then calculate a® using linear
weighting from the grid to the particles, and finally, calculate 2" *! using the known quantities
in Egs. (8) and (9).




e Use linear weighting from the particles to the grid to determine 5"+! and x"*! as in Eqgs. (12)
and (13). Solve Eq. (14) for ¢"*! with a tridiagonal matrix inverter. Calculate E®*! using
Eqgs. (15), (19), and (20).

e In the postpush for each species, determine z"*! and v"*! using the a"*! terms in Eqgs. (8)
and (9) for all particles with Z"*! not in the walls. Here, a®t! ~ ¢E"*!(z"+1)/m and this

quantity is not saved.

e Repack the particle arrays to remove particles lost to the walls. Do Monte Carlo collisions.

5 Multi-Time Scale Criteria

We now describe the scheme for the electrons only, knowing that ions can also be pushed with the
large implicit time step. The v; — z phase space is divided into two regions by placing a rectangle in
phase space. Inside the rectangle, electrons are pushed with At and outside the rectangle, electrons
are pushed with 6t where At > §t. The rectangle boundaries in z are the sheath plasma boundaries
averaged over an RF cycle. The rectangle boundaries in v are £eAz/At where 0 < ¢ < 1. The

boundary in z is necessary because the electric field in the sheath has large spatial gradient.

6 Multi-Time Scale Method

Here, we construct a very simple multiscale method for electrons as a correction to our original
implicit scheme. The correction is an attempt to accurately model the fast electrons. Suppose
At = 46t, where 6t is chosen to accurately model the fast electrons. The fast electrons are advanced
in the time steps

n=012345,67,8,..

The slow electrons are advanced in the time steps

N =10,4,8,..

Both fast and slow particles are moved with the direct implicit simulation technique for consis-
tency. If the fast and slow electrons were moved independently, the implicit corrections to the free

stream densities are
Sp} = —B,((Ba/m)Fp61E™),

for the fast (F) electrons and
8o = ~3;((Bg/m)5§ AL’EN),




for the slow (S) electrons. 8 depends on the particular implicit scheme used to push the electrons.

The field must be calculated at every time step with the Poisson equation:
32" = (P +8PF + 5% + 60%)/<o.

The key is to determine jps and éps at the n time steps during which the slow electrons are NOT
pushed, e.g. 4 to 5, 5 to 6, etc. Since we view fast electron motion as a correction to the implicit

scheme, éps retains the same form:
5p% = —3:[(Bg/m)5% AL’ E™],

where we keep the same At as if we were actually pushing the slow particles from t — At to t.

’

The approximation to ps for the time steps in which the slow electrons are not pushed is given
by linear weighting:
P5 = (3/4)55 + (1/4)#5,

p5 = (2/4)75 + (2/9)%,
ps = (1/4)55 + (3/4)%.
Note that ,6;'8 are due to the actual free streaming of the slow electrons. The implicit Poisson

equation becomes

0:(1+ x]8:¢™ = —(55 + AF)/ €0,

where x = (8q/m)(At?5% +6t25}). Boundary conditions may be worked out from an implicit Gauss

law based on the above equation.

7 Numerical Procedure for Multi-Time Scale

The numerical procedure for moving the simulation from time step 4 to 8 is outlined below. The

procedure is the same for moving the simulation from 8 to 12, 12 to 16, etc.

Determine which electrons are slow and which electrons are fast.

Prepush slow electrons from 4 to 8.

Calculate ps for 5,6,7.

Prepush fast electrons from 4 to 5.

e Field solve at 5.




-~}

e Postpush fast electrons from 4 to 5.
e Repeat fast electron steps for 5to 6,6 to 7, 7 to 8.

e Postpush slow electron from 4 to 8.
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Abstract

r

Two methods are presented for wp.At >> 1 particle simulation. The first method pertains
to cases where there is no u.At/L < 1 restriction. For this case, an alternate form of the
direct implicit particle simulation method is presented. The second method pertains to cases
where there is a vicAt/L < 1 restriction, where L is a sheath length that must be resolved by
the particles. The method uses quasineutrality in the plasma bulk with a logical sheath on the
plasma boundary. Quasineutrality removes the wp.At < 1 restriction and the logical sheath

allows some resolution of the sheath physics.

1 Introduction

Very often, one wants to simulate a plasma phenomenon with a characteristic frequency w << wp,.
However, if the model equations include wy,. physics as well as w physics, such as the equations
of electrostatic particle simulation, then the w,. time scale must be resolved or there will be a
numerical instability. Furthermore, there are often spatial scales L such as sheath lengths or gradient
lengths that also need to be resolved. For the case of particle simulation, this gives the restriction
vt At/L < 1. This restriction has nothing to do with numerical stability but everything to do with

modeling the particular physical problem accurately.

To overcome the stability restriction wp.Af << 1, one can either alter the equations used to
model the physical phenomenon or use implicit methods to solve the original equations. Both
methods may fail if there are other restrictions. For example, one may introduce quasineutrality
into the model to remove the wy, time scale, but this approximation breaks down in the sheath region
where the plasma is very non-neutral. As another example, one may introduce implicit methods,
but v, At/L < 1 must be obeyed for sheath resolution and if L ~ Ap., one still has the w,.At

restriction.




Here, two methods are presented to allow large wy.At. The first method is just an alternative
form of direct implicit particle simulation [?], but this alternative form may be more accurate. This
method would apply to the case of an RF driven sheath simulation. For this problem, the plasma
sheath region is large due to the Child Langmuir law and v;.At/L < 1 is not too limiting. The
second method attempts to remove both the wp. time scale and the L space scale restrictions by
using a quasineutral Poisson equation [?] to model the plasma bulk and a logical sheath {?] to
model the plasma boundary layers. This method would apply to the case of a plasma between two

floating conductors. For this problem, the sheath is on the order of a few Ap,.

The plan of this report is as foliows. In the second section, an alternative form of direct implicit
particle simulation is presented. In the third section, a numerical proceedure for this method, in
the remainder of this report called method a, is outlined. In the fourth section, the derivation of a
quasineutral Poisson equation is given and the highest frequency that the quasineutral model can
resolve is calculated. In the fifth section, the logical sheath is reviewed and it is shown how to merge
the bulk’s quasineatral model with the boundary’s logical sheath. In the sixth section, a numerical
proceedure for this method, in the remainder of this report called method b, is outlined. Finally, in

the seventh section, some concluding remarks are made.

2 Method A: An Alternative Form of Direct Implicit Par-
ticle Simulation
A form of direct implicit particle simulation will be presented for the case of a one dimensional

unmagnetized electrostatic plasma. Following Langdon, Cohen, and Friedman [?], implicit particle

movers advance the particle position by the equation
"+ = BAL2gnHT 4 FnHY §))

where Z is the portion of the position advance dependent on quantities known at time level n and
depends on the particular implicit scheme. Now let the electric field E be defined on a spatial grid.
Then,

a™+! = gE"H1(z™) /m, (2)

where weighting, e.g. linear, NGP, etc., would be used to determine E at particle location z™+!

from E on the grid. Combining Eq. (1) and (2)
In+l = 0'E"+,(zn+l)+fn+l, (3)

where o’ = fAt2q/m.



Note that a logistical problem with the implicit method is that E”+! depends on p"*! which in
turn depends on the particle locations z"+1. Unfortunately, all of the particle locations depend on
En+l, One way to get around this problem is to linearize the locations z™*! about the locations

#"+! as in Reference 1. Then p"*! on the grid is written as

pn = n+l +6 n+l (4)
where g*! depends on #"*! and

6 n+l _ a [p-ﬂ+162n+l] (5)

Equation (5) constitutes the linearization. Strictly speaking, §z7+! = z"+! — #"+1 is an individual
quantity for each particle and is given by Eq. (3). Instead, §z"+! is approximated as a grid quanmy
while maintaining the form as given by Eq. (3). That is,

sz = o/ EnHL, (6)

Equations (5) and (6) .1ay be combined and then substituted into the right hand side of the Poisson

equation to get an implicit version
3,[1 + aﬁn+1]a:¢n+l = -f’"+l/€0s (7)
where o = o' /¢o.

Another approach will now be described which does not depend on linearization or the approx-
imation used to arrive at Eq. (6). Suppose a one dimensional grid is defined with grid points 0 to

N. Let h*+1 be the uearest left grid point for a particle located at z"+1, i.e.,
hn+! = int(z"*1 / Az), (8)
where Az is the space between grid points. Given hA"*! and E™+! on the grid, Eq. (3), with linear
weighting, would be
= alBRK + (BRH = ERH)(E™ — zheni)/ A2 + 27 (9)

Equation (9) can be solved for Wya4141(2"*1) = (2"! — z041)/Az, which is the linear weighting

factor from a particle at z"*! to the h"+! 4 1 grid point. Equation (9) becomes

WERE, + Whaai (2711)]

Wintr (2™ = (10)
* [l'— (E:I:l...l E;:Ibll)]
where v = a/Az. Also,
Wh-+|(2"+l) =1- Wh-wn...](l'n*'l). (11)

Now for any species, density on the grid, p”*!, is formed as

! = QL W(2*Y), (12)




where the sum is over particles that contribute density to the j grid point and Q = ¢/Axz for one
dimensional weighting. Particles in the grid cells immediantly to the left and right of the grid point
Jj contribute the density. Wj_ja+14y contributes from the left grid cell and W;_jn+1 contributes

from the right grid cell. With this in mind, Eq. (12) can be written

1 _
At = QTiaesrg1zjWhanr (2

+ QZ;,;,.“____,-W,,..“(::"'“), (13)

n+l)

where the first summation is for contributions from the left grid cell and the second summation is

for contributions from the right grid cell.

Substituting Egs. (10) and (11) into Eq. (13) gives

[YERE: + Whns (274))]

= [1 - 7(E:-tfll+1 - E::o’ll)]

[YERZL + Whasa (7)) )
<+ QE." ntiz=i | 1 — .
heti= ( N —(EpRL,, - Epth)]

1 _
it = QEipanin

(14)

For the first summation, j — 1 is substituted for A"*+! inside the summation. For the seccnd sum-
mation, j is substituted for A”*! inside the summation. The subscript j and j + 1 field terms are
constant over the summations. Therefore,
p"+‘ = 0Q [Nh-+|+1=j7E?:ll + Ei,h“*‘#—l:j“’j(i"""l)]
’ (1 - y(E}* - E}H))

+ Q [N"‘+‘=i(1 - 7E;“Ill) - zi,hn+l=jo+1(5"+l)]
(1- 7(5?-:1] - E?“)] ’

(15)

where Nja4141=; is the number of particles weighing in from the left and Nja4141=; is the number

of particles weighing in from the right.

To use Eq. (15) to form the density, one must know h"+! before knowing z”+!. A possible
solution to this problem is to guess A"+! = int(#"+1/Az). This is a good guess since particle
Courant conditions require v,At/Az < 1, and so one may expect | z"*! — #"+! |<< Az. For
particles very close to a grid point, there may be a jump from one grid cell to the next making the
above guess for A"*! incorrect. However, particles very close to a grid point are moved mostly by
a field located at that grid point and these particles contribute charge mostly to that grid point.
Therefore, any errors due to the wrong h"*! being used only appear in side terms, i.e. a small push
from and a small contribution to j ¥ 1 instead of j + 1. Linear weighting, on which this method is

based, minimizes these kinds of errors.

Eq. (15) is substituted into the right hand side of the Poisson equation. The resulting set of

equations would have the form

924"+ = T,omHI(EPH, EED), (16)




Er+l = —g,¢nH, (17)

From Eq. (15), it can be seen that the particle quantities need only be summed over once. Then Egs.
(16) and (17) must be solved simultaneously over the grid. This cannot be done by simple matrix
inversion techniques because of the nonlinear form of Eq. (15). Instead, some matrix iteration
technique may be used. There are continuing advances in matrix iteration techniques which may be

applied to this case.

Method A has been presented for a one dimensional system with linear weighting from the
particle to the grid and visa versa. It is not difficult to see how the method may be generalized to
higher dimensions, however, the equations would be quite messy even for two dimensions. Using
higher order weighting would make even the one dimesional equations cumbersome also. Also, it is

difficult to see how to incorporate NGP weighting due to the form of the equations presented.”

Finally, one can compare this method to Appendix C in Langdon, Cohen, and Friedman [?]. In
that appendix, the authors present a correction to the perturbed particle position which has a form
similar to Eq. (10). However, that perturbed particle position is still substituted into the linearized
theory as outlined in Eqs. (5)-(7). Here, an attempt is made to use n + 1 particle positions, written
in terms of n + 1 fields on a spatial grid, without appealing to a linearization form as represented by

Eq. (5). Whether this is just nitpicking or if this method is worth the trouble remains to be seen.

3 Method A: Numerical Proceedure

A numerical proceedure by which the above method may be implemented will now be presented.
For a one dimensional unmagnetized electron and ion plasma, the following equations describe the

evolution of the particle orbits and the electrostatic field:

i=v, (18)

v = qE(z)/m, (19)
816(z) = ~E,p(z)/eo, (20)
E(z) - 8:¢(z). (21

The time implicit discretized form of these equations may be written
" = 2" 4+ At 4+ ™) /2, (22)

v = 0" 4 gALE] (") + Ep(z"))/2m, (23)

82¢7%! = —%,07* /eo, (24)




E}tl = ~3,.¢7%1, (25)

where Eqs. (22) and (23) are advanced for all particles in both species and Eq. (15) is substituted
into the right hand side of Eq. (24). The trapezoidal scheme for the particle advance is chosen for

illustrative purposes only. There are other schemes that contain adjustable damping {?].

The first step of the particle advance is to calculate the part of the advance dependent on known

time level n quantities:

"t = o" + qALET(2")/2m, (26)
M = 2% 4+ AL 4 0M)/2, (27)
R+ % int(2" !/ Az). (28)

’

Next, the weighting factors in Eq. (15) are calculated. Note that this means two grid quantities
must be found. Particles weighing in from a left grid cell to a grid point, i.e. the summation over
A"+l 4 1 = j, is calculated as a grid quantity. Particles weighing in from a right grid cell to a grid
point, i.e. the summation over h"*! = j, is also calculated as a grid quantity. Then Eq. (24), with
Eq. (15) used on the right hand side, and Eq. (25) are iterated on the grid to find the potential and
the electric field.

Finally, the particles must complete their advance:
v+ i 4 qALERH (274)) /2m, (29)

2 FhHL 4 AL(v" ) - 042, (30)

The scheme presented can be considered a first step in an interation over particle and grid quantities
if one wants to make the computational effort. The boundary conditions can be treated in the same

manner as in explicit methods.

4 Method B: The Quasineutral Model for the Plasma Bulk

Now consider a problem of a quasineutral plasma bulk. One can expect important physics in long
wavelength low frequency modes. Therefore, the plasma approximation, n, = n; but electrostatic
E # 0, can be used explicitly in constructing a physical model. Hewett derived the quasineutral
equations for a particle ion, fluid electron, electromagnetic Darwin model [?]. A quasineutral model,
complete with a quasineutral Poisson equation, will now be derived for the simpler unmagnetized,

electrostatic case where both species are treated as particles.




The fluid equations, in vector form, for an unmagnetized, electrostatic, non resistive plasma with

electrons and singly charged ions are

—edmn.+V-3,=0, (31)

edn; +V-J; =0, (32)
3J.-eV-n.<vv>.,=e*nE/m,, (33)
3J; +eV-n; <vv >;=e*n;E/m;, (34)

where J = tenu and u and < vv > are first and second moments of the distribution which, like n,

can be found by particle weighting.

The basic idea behind the quasineutral Poisson equation is to use the plasma approximation
n. = n; directly and ignore the regular Poisson equation which, with this approximation, would give
V3¢ = 0. With the plasma approximation, the sum of the continuity equations, Eqs. (31) and (32),
gives

V-(Je+3i)=0. (35)
With the plasma approximation, the sum of the current equations, Egs. (33) and (34), gives
(e + J;) +eV-ni(< vo >; — < vv >,.) = €2(1/m, + 1/m;)n,E. (36)
With the definitions P = V - n;(< vv >; — < vv >,.) and g = m.m;/(m. + m;), Eq. (36) becomes
3(J.+J.)+eP =e2n,E/p. (37)

Operating on Eq. (37) with V- and cancelling the resulting J terms using Eq. (35) gives, after some

manipulation, the quasineutral Poisson equation:
V3¢ =E-Vn;/n; — uV .P/en;, (38)

where

E=-~V¢. (39)

A numerical solution of Eqs. (38) and (39) will not require iteration on the grid because the right
hand side of Eq. (38) is linear in E.

It should be noted that because the ions and electrons are treated as particles, one could calculate
both n. and n; on the grid. The above theory only requires n; because it is assumed that n, = n;.
In a particle simulation, n, & n; even in a quasineutral model because of particle noise. However,
in the spirit of a low frequency long wavelength quasineutral simulation, n; as determined by the
ions weighed to the grid will be used in Eq. (38) and the definition of P. n. could be calculated

and then compared to n; for diagnostic purposes.




To calculate the natural frequency present in the model equations, one starts with Egs. (31) to
(34), takes n, = n;, and then perturbs the equations such that n = no + én and u = éu. Ignoring
the 86, letting & o expli(k - x — wt)], and taking V- n < vv >= v?Vn, one gets a linear dispersion
relation of the form

w? = k¥(T. + T;/m. + my), (40)

which predicts ion acoustic waves. These waves have the highest frequency that needs to be resolved

by the numerical analogues of the particle advance and quasineutral Poisson equations.

5 Method B: The Logical Sheath Model for the Plasma
Boundary Layer

The quasineutrality of the plasma ends near a bounding wall since the more mobile electrons charge
up the wall while leaving the plasma near the wall ion rich. This region is called the sheath and is
usually a few Ap. wide for an undriven wall. The sheath is analagous to boundary layers in fluid
flow. In this region quasneutrality breaks down. Furthermore, even in steady state, the sheath
represents a sharp gradient and the accuracy condition »At/L < 1 forces small At despite the large
At that can be used in the bulk.

Fortunately, the logical sheath boundary condition can be used so that the basic features of
the sheath can be modeled without creating an accuracy condition on At [?]. The logical sheath
derivation is based on the fact that a potential drop near a floating wall always adjusts itself so that
the electron and ion fluxes into the plate are equal at steady state. The model collapses the sheath
potential drop into a step function with the sheath width approaching zero. To the plasma particles
just touching the wall, the electric field and the wall charge still appear to be zero. This allows the
boundary conditions for Eqs. (38) and (39) to be

Eo =0, (41)

¢O = ¢11 (42)

where subscript 0 indicates the zeroeth grid point at the left wall. There are similar conditions at

the right wall.

The electric field tangential to the wall is always zero while the logical sheath allows the electric
field normal to the wall to be zero thus giving Eq. (41). Equation (42) proceeds from a Gaussian pill
box drawn about the wall. The charge enclosed in that pill box is zero because the logical sheath

suggests that there is no surface charge density on the wall and quasineutrality suggests that there




is no charge density near wall or any other place in the plasma. The bulk is allowed to press up

against the wall.

In reality, there is an electric field near the wall, but only the particles that can cross the potential
barrier and can go into the wall feel the field. This effect is modeled as follows. The number of
electrons N, and the number of ions N; crossing into the wall are counted. If N. > N;, the N,
electrons are ordered in velocity from fastest to slowest. All N; ions and the fastest N; electrons are
absorbed into the wall to give equal fluxes while the slower N, — N; electrons are reflected as if they
were in a potential well. For the rare case N, < N; all particles are absorbed and a positive wall
surface charge density o, is calculate which leads to a modification in Eq. (42):

0 = 61 + ouAz/cq. (43)

’

No modification in Eq. (41) is needed since the activity of the electric field at 0 is modeled by the

particles themselves.

6 Method B: Numerical Proceedure

A numerical proceedure for method b will now be presented. It will contain less detail than the
proceedure presented for method a because method b is rooted in physics whereas method a is rooted
in numerics. Furthermore, the numerical proceedure to be presented is explicit. However, the logical
sheath boundary condition has been used with implicit codes that solve the regular Poisson equation
in the bulk [?] and there is no reason why the particle advance and quasineutral Poisson equations

cannot be solved by implicit numerical methods.

Equations of motion for electrons and ions take the usual form
x=v, (44)
v = qE(z)/m, (45)
where E is known on a grid and the field is interpolated to the particle. After the advance, the
logical sheath boundary conditions are calculated. Then, the < vv > and n terms are accumulated

on the grid and P is calculated. Eqs. (38) and (39) can be solved by matrix inversions or iterative

methods so that the field at the next time step is determined.

7 Conclusion

Two methods have been presented to simulate plasmas with the wy.A constraint relaxed. Method a

pertains to the case where there are no gradient constraints whereas method b pertains to the case
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of a thin sheath layer. Both methods would require v;At/Az < 0.5 for accuracy. It now remains for

both methods to be tried for some simple bounded plasma test cases.

References

(1] A. B. Langdon, B. I. Cohen, and A. Friedman, J. Comp. Phys. 51, 107 (1983).
(2] A. Friedman, UCRL Memo PT803002, (1988).
(3] D. W. Hewett and C. W. Nielson, J. Comp. Phys. 29, 219 (1978).

(4] S. E. Parker, PhD Dissertation, UC Berkeley, (1990).




ME06

Vs-¥ Phase Space

HEs06

A Comparison of PIC Simulation and Experimental Results in a

Capacitative RF Discharge[1]
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Simulation results from PDP1, a 1d3v bounded particle-in-cell code[2], are compared to recently

published experimental results[3] over a pressure range of 10-100mTorr and 100-1000V applied RF

voltage in a symmetric, parallel plate, Argon discharge. We show that where similar results are ob-

tained, the simulation allows insight into plasma parameters which are not experimentally accessible,

such as details of the electron power sources and losses.

We have been exploring the numerical effects of various algorithms of moving particles. , In

particular, how employing certain algorithms lead to either numerical cooling or heating. Implicit

codes, for example, are not able to model the collision of the fast tail of electrons in a RF discharge

with the plasma sheath accurately. Over long periods of time, the lack of stochastic heating in the

simulated plasma will result in a completely inaccurate system. The large time steps associated with

implicit codes curtails their use in the simulation of RF discharges.

Below are two examples of phase-space snapshots of PDP1, showing both an explicit result(physically

correct) and an implicit result(which is numerically cooled) for RF discharges; note that the latter

does not have any fast electrons.

Va-\ Phase Srace

feos ormoam o

X [ 1 3

References

LISE+06

V3-X Phase Spece

LL9S5E.06

[1] Work supported in part by the ONR, DOE and NSF.

Vi.X Phase Space

[} a 0.047

(2] Available from the Industrial Liasgn Program Software Office, EECS Dept., UC Berkeley, CA

94720.

[3] V.A. Godyak, R.B. Piejak and B.M. Alexandrovich, IEELE Trans. Plasma Sci., August 1991.




Progress on PDP2, A Two Dimensional Bounded Particle

Simulation Code
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Abstract

PDP2, a two dimensional bounded electrostatic particie simulation code for plasmas, is a
fairly straightforward extension of the one dimensional bounded particle simulation code PDP1.
In this report, we will describe in detail the extension of the field and circuit solve to a second
dimension in space with periodic boundary conditions. We will also discuss particle loading,
pushing, and weighting in two dimensions. Like the current workstation version of PDP1, PDP2
is run in the Xwindows environment and so we will describe the available diagnostics. Finally,
we will conclude with the additional physics and diagnostics that should be added before PDP2

can acheive its full potential.

1 Introduction

Two dimensional particle simulation of plasmas is not new. Previous examples of two dimensional
particle models in the electrostatic limit include the work of Decyk and Dawson [1] and the work of
Thielhaber and Birdsall [2]. Decyk and Dawson developed a Poisson solver for generalized boundary
conditions based on two dimensional Fourier transforms. They successfully simulated surface waves
at a vacuum plasma interface. Thielhaber and Birdsall developed a Poisson solver for a plasma
bounded by perfectly conducting walls in z and periodic in y [3] in their code ES2 to study Kelvin

Helmbholtz modes.

The model used in PDP2 is basically the same as that used in ES2. The differences between
PDP2 and ES2 are inherited from PDP1. The physics differences are that PDP2 will use the charged
particle neutral collision model of PDP1 [4] and uses the external circuit solver of PDP1 [5] where
as ES2 uses collisions only as a source of electrons and ions to counter particle losses to the walls

and uses the external circuit solver of Lawson [6]. The PDP1 collisional model is an improvement in




]

that it treats collisions in a more sophisticated manner. The PDP1 circuit solver is an improvement
in that it allows a greater range of input parameters. The diagnostic differences are that PDP2 runs
in an Xwindow environment like PDP1 [8]. TLis allows the viewing of physics as it happens and
interactive measurements of any diagnostic via crossheir and rescaling mechanisms. ES2 runs on

the CRAY in which graphics files can only be viewed at the end of execution.

The development of PDP2 is incomplete. The actual addition of the collisional package and the
corresponding changes to input parameter reads are required. The options of particle injection from
the walls and distributed sources could be added. PDP1’s dumping and restarting capability should
be added. Furthermore, all of the PDP1 diagnostics must be included in PDP2. Nonetheless, PDP2
has already been used to sucessfully simulate sheath waves in an unmagnetized plasma [9]. Perhaps
a more obvious test would be to temporarily use the ES2 collision package and try to recover’the

results of Thielhaber and Birdsall.

2 Field and Circuit Solve

Consider a plasma bounded in z by perfectly conducting walls and assume the plasma is periodic in
y as in Fig. 1. The conducting walls are attached to an RLC external circuit with a voltage source.
The wall to wall distance is L;. Let grid numbers run from i = 0,M in r and j = 0, N in y. The

walls are at grid point i = 0 and i = M. Zero net Charge over the entire system gives the relation

N-1 N1 M
Y (AyL.ob; + AyL,oly;)+ > Y AzAyL.gl; =0, (1)
=0 J=0 =0

where the superscript denotes the time level. The surface charge density o varies in y because of its
relation to the internal charge density p. Since the z dimension does not figure into the model, L,
may be chosen to be the unit length, e.g. 1m in MKS. Next, Kirchhoff’s Laws are employed at the
left i = 0 wall and the right i = M wall which gives

N-~1 N-1
Qbo+ Qo — Q5% = D AyL.ol; - Y AyL.oh; 2, ()
=0 j=0
and
N-1 N=1
Qpm +Qim — Qi = Y AyLioly; — > AyL.oh (3)
j=0 j =0

where Q, is the net charge extracted or deposited on the wall due to absorption of plasma charged
particles or emission of charge particles to the plasma and Q. is the charge on the external capacitor.

Note that Q.u is available from Q.o by adding Eqs. (2) and (3) and substituting Eq. (1).
The external circuit equation is

LQco + RQco + Qeo/C = V(1) + 6 + do. (4)




where ¢ indicates an equipotential at the wall (no j subscript) and V is a voltage source. The

solution to this equation can be written as [5)
Qeo = (V(t) ~ K* + ¢y — ¢o)/ o, (5)
where ap and K* are numerical factors defined in [5).

To develop boundary conditions in z for the Poisson equation, we draw a Gaussian pillbox about
some grid point j. This is shown on Fig. 2 for the left i = 0 wall. Noting that the electric field
directed along the wall (along y) and inside the wall is zero and that E; at i = 1/2 is given by

(do,j — #1,j)/ Az, the finite differenced version of Gauss’ Law is
(80 = #1,)/ Az = Az(po,;/2 + 0¢;/ Bz)/eo, (8)

where the superscript indicating the time level is dropped for internal ¢ and p . For the right hand

wall, a similar equation may be written as
(Sh —~ oM -1,5)/Az = Az(pm,; /2 + o4/ Az)/eo. (7)
The boundary conditions for y are periodic. Finally, the Poisson equation is written numerically as
(Biz1,j — 20ij + Bit1,)/ AT + (dij-1 — 26i,; + i j41)/AY? = —pi j /€0 (8)

for the internal ¢. This completes the fundamental set of equations for the field and circuit solve

routine. For more discussion see Chap. 16 in Birdsall and Langdon [3] and Lawson [7].

We solve the set of above coupled equations by Fourier transform methods as discussed in Chap.
14 of Birdsall and Langdon [3]). The y periodic boundary conditions are taken into account natu-
rally and wave spectrum (in k) diagnostics are a by_product of the transformations. The Fourier

transform of Eq. (8) in the y direction is
$i-1.k + Didik + dig1,k = —Az%p; i /€0, (9)

where the subscript k is the same as k, and Dy = —~2[1+ 2(Azsin(zm/N ))2] is a term that accounts
for the finite difference terms in Eq. (8) [3], ¢, is the Fourier transform of ¢,;, k¥ > 0, and
i=1,M — 1. Since ¢ is constant in space along the conducting walls, e.g., ¢o,; = ¢{ for all j, then
box = 0 for k > 0 and dox=0 = ¢p. Similarily, dprx = 0 for k > 0 and ok=0 = ¢%,. ¢ix is
geaerally a complex quantity where as ¢, ; is real. The k = 0 mode Fourier transformed phi has a
zero imaginary part and the real part is just the average over the periodic length L,. The Fourier

transform of Eq. (6) for k=01is

(66 ~ d1,k=0) = BT (po.k=0/2 + 0§ y =0/ DT)/ €0, (10)




where N1
Ohuzo= Y ob;/N. (11)
j=0

We do not need the equations for the higher modes of 0.
Substituting Eqs. (5) and (11) into Eq. (2) gives
¢4+ aoAyL: Nof,_o = 5, (12)
where ' = V(t) — K* + ao(Qpo — LSO 4 AyAzN a(',:'kA:'o). This equation relates the average left
wall surface charge density 0§ , _o to the left wall potential 4. Rearranging Eq. (10) gives
66 — d1,k=0 — AZOf —0/€0 = Az?pok=0/(2€0). (13)
Finally, writing Eq. (9) for k = 0 gives |
bi-1,k=0 + Di=0®i k=0 + Gi+1,k=0 = —AZ>p; x=0/¢0, (14)

where 1 = 1, M — 1. Recall that the k¥ = 0 mode Fourier transforms are real quantities. For i = 1,
®0,k=0 = &§ as usual and fori = M -1, dp k=0 = ¢}w = 0 as a reference potential. There are M +1
unknowns which are a'(‘,,k=0, #%, and ¢ k=0,i = 1, M — 1. Equations (12)-(14) constitute M + 1
equations for all of the unknowns. The resulting matrix for this system is tridiagonal which is easily
inverted. The above set of equations couples the zero mode portion of the Poisson equation to the
circuit equation. For the k£ > 0 modes, no coupling to the circuit is present since ¢or = dpmx = 0
for k > 0. For this case, Eq. (9) gives M — 1 equations for the M — 1 unknowns ¢; s,k = 1, M — 1.
Good algorithms for fast Fourier transforms of real quantities and tridiagonal matrix inversion can

be found in Numerical Recipes in C by Press et al [10]. These algorithms are used in PDP2.

Finally, the ¢, x can be inverse Fourier transformed into ¢; j. Egs. (6) and (7) can be then used
to get 0o j and o j,

00,5 = €o(g — 61,;)/ Az — Az(py,;/2), (15)
Oh,i = €o( by — OM-1,5)/ Az ~ Az(pp,;/2). (16)

Once 09 ; and oy ; are calculated, E; on the wall is given by,
E:0,; = 00,j/€0 Er0,j = 00,5/€0. (17)

Eyo,; = Eym,; = 0 on the wall, and for the internal points, the electric field is obtained from the

finite difference version of E = -V ¢,
(Er)i,; = (di-1 — bi41);/(242), (18)

(Ey)i,j = (¢j-1— 8j+1)i/(24y). (19)




At y = 0 = L, periodicity is used to complete the finite difference. For a short circuit, ¢f = V(1)
and ¢, = 0 as a reference potential. Then, Eq. (14) can be solved independently of Eqs. (12) and

{(13). For an open circuit, the Qo terms in Eq. (2) vanish, leaving
0(‘),)::0 = Q‘po/(AyLz N), (20)

so that Eqgs. (13) and (14) can be solved with Eq. (17) instead of Eq. (12).

3 Particle Manipulation

A particle in a simulation is often called a superparticle since it represents many actual plasma
particles. For instance, if a plasma chamber volume is 1m> with a density of 10'8m=3 fo ach of

0'8 plasma particles in the chamber. For even the fastest computers

two species, then there are 2 x 1
with the largest storage space, it is impossible to represent the actual number of particles. If
we use 200,000 simulation particles to represent the system, then each of these superparticles is
worth 10'3 plasma particles. Despite the seemingly poor representation, many theoretical and
experimental results have been observed via simulation. In this section, the word particle will refer

to the simulation superparticles.

Manipulation of the particles consists of loading, solving of the orbit equations, and calculating
density on the grid from the particle positions. Particle injection and particle collisions, not yet

implemented in PDP2, are discussed elsewhere [3, 4].

Loading of particles consists of choosing the initial conditions for the problem of interest and
then setting the initial locations and velocities of all of the particles so as to represent the initial
state. In PDP2, we assume an initial drifting Maxwellian distribution in velocity and a uniform

distribution in space. The Maxwellian takes the usual isotropic form
f(v) = Cexp(—v?/20v3), (21)

where v, is the thermal spread in velocity and v? = (v: — v,o)2 + (v, — v,o)2 +(vy — v,o)z. The zero
subscripted values are the user specified drift velocities. Once Eq. (18) is inverted to yield v [3], the
velocities in each direction are chosen via regular random numbers and the drifts are then added.
The uniform loading in configuration space is done by using bit reversed random numbers in y and
random numbers in z. At this time, there is no option to add a perturbation to the particle orbits.

Any waves that are to be excited must come from the thermal noise in velocity.

Once the particles are loaded, their equations of motion must be solved to advance the velocities

and positions in time by one At. Then charge density on the grid is accumulated (using linear




weighting) so that the Poisson equation may be solved and the electric field can be calculated for

the next time advance. The equations of motion are simply
X=v, (22)

v= (q/m)[E(x) +VvVX Bo], (23)

where By is a user specified magnetic field. The user may specify the magnitude and direction
of the magnetic field. Equations (19) and (20) are advanced by the well known Boris mover [3].
Particles that go beyond y = 0 or y = L, are simply reintroduced into the other end in y to
satisfy the periodic boundary conditions. Particles that hit the wall on the left side contribute to
Qpo- Since Qp is not used, the particles that hit the wall on the right side do not contribute to
the physics except indirectly through the circuit equations. Any particle that hits a wall is deleted
from the particle list. To reduce the number of multiplications and divisions, the following internal
normalizations are used:

¢ — qNc/(L:AzAy),
r—z/Az,
v~ y/4y,
vy — v:At/Az,
vy — vyAt/Ay,
Uy & U,
where N¢ is the ratio of plasma particles to superparticles.

Finally, one needs to calculate the charge density on the grid. To do this, simple linear weighting
is used. It should be mentioned that linear weighting is used to determine E at the particle for the
Boris mover. From Fig. 3, the fraction of the particle charge contributed to grid point ! (or the
fraction of electric field contributed from grid point ! as needed by the Boris mover) is given by the

ratio of the area of square ! to the total cell area AzAy where | = 1,2, 3,4.

We have also added the option of a drift kinetic species. In this approximation, the gyromotion

of the superparticles is neglected. The equations of motion take the form
x=E,/B+vB/B, (24)

vy = qEy/m, (25)

where E;, = E x B/B, E; = E-B/B, and B is the magnitude of B. Note that the electron
superparticles follow motions parallel to B and the E x B drift. Since there are no gradients or

curves in the magnetic field, VB and curvature drifts are absent from the equations. E varies in



space which gives a correction to the E x B drift on the order of r2,. For small r, this correction
can be ignored. E also varies in time which sets up a polarization drift which is not accounted for

in the Eqs. (24) and (25).

The numerical method used to advance Eqgs. (24) and (25) cannot be a simple leapfrog because
the advance of x depends on the field quantities directly. Here, we propose the following multistep

centered leapfrog scheme

x"+1 = x"~! + At[Bv} /% + 2E% (x"))/B, (26)
vlrlaﬂ/z - vﬁ—l/2 +thE|'|'(x")/m, (27)
x"~1 = %"+ + At[Bur+!/?)/B, (28)

where E; and E) are defined on the grid. Note that fields calculated at x™ are used to move I;oth
vy from n — 1/2 to n +1/2 and x from n — 1 to n + 1. In the next pass through this algorithm, x"

nt2 M+1/2 . n+3/2
Yy

is moved to x is moved to v, , and the fields used in these moves are calculated at

x"+!, The algorithm has been programmed but has yet to be tested for accuracy and stability.

4 Concluding Remarks: A Wish List

The basic changes to PDP2 are in order of importance:

e Add the charge particle neutral collision package and all of the input deck and reading para-
phanalia that is needed.

e Add all of the diagnostics already present in PDP1. This includes number versus time for any

species which is a very basic and important diagnostic.
o Incorporate the new version of Xgraphics including three dimensional visualization.
o Add the file dumping and restarting options already present in PDP1.

e Include particle injection from either wall.

Other changes to PDP2 are conceivable. For example, one may want to consider the case of walls
in the y as well as the z direction. Then one could use either the field solve of Decyk and Dawson or
opt for the many elliptic solvers currently available. If PDP2 is to be run on a parallel computing
machine, obviously one would want to choose a Poisson solver that takes the most advantage of
parallel architecture. Depending on the application, one may want to model walls that are not
perfect conductors or walls which change material properties along their length. A wall with a time

and space varying potential could be added. Cylindrical and spherical shapes are possible.




PDP2 could be made into a direct implicit or even a multiscale code. The collisonal model
could be made even more sophisticated by taking into to account charged particle collisions. The
possibilities are of course endless, but with its present sophistication, PDP2 could be a good base

from which other particle simulation codes can be developed.
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Theory and Simulation of Plasma Sheath Waves
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Abstract

Sheath waves have been investigated analytically and with particle simulation for an un-
magnetized two dimensional plasma slab with periodic boundary conditions in y and conduct-
ing walls in z. Analytically treating the sheath as a vacuum layer, the sheath wave bears a
resemblance to plasma vacuum surface waves. The simulations are in good agreement with the

theory for both bulk Bohm Gross waves and edge sheath waves.

1 Introduction

It is well known that there is a great variety of waves in a plasma that is well neutralized (n; ~ n.)
and does not have sharp gradients in field or density quantities. Waves also exist at the plasma
edge or sheath where there is large charge imbalance (n; # n.) and where the gradient scale lengths
are on the order of the electron Debye length in the unmagnetized case or on the order of the ion
gyroradius in the magnetized case. These waves have received less attention in the literature. This
paper is a report on electrostatic waves propagating along the unmagnetized plasma edge or sheath.
Both analytic theory and computer simulation are used to study the sheath waves. The computer
simulation may be viewed as an experiment if the simulation model is constructed from first principal

physics with a minimum of approximations or assumptions.

Before we start on the two dimensional theory and simulations, let us review the results of one
dimensional simulations [1]. The one dimensional simulations are bounded by perfectly conducting
walls which are connected by an external RLC circuit with optional voltage and current sources.
The simplest boundary conditions for which sheath formation is observed is the short circuit where
the reference potential or voltage on both walls is set to zero. The device is initially filled with
warm electrons at a density n.o. The electrons have a full Maxwellian velocity distribution at a
temperature T,. The ions are treated as an imiobile background with a density™n;o = n.qg so that

the system is initially neutral. The device length is about 50 p,.




PROGRESS ON CONVERSION OF ES2B TO XGRAFIX

Dr. S. Ishiguro
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We connected the 2d3v electrostatic magnetized bounded particle simulation
code ES2B, which has been developed at Tohoku University in Japan, to Xgrafix.
ES2B is an x-y two dimensional code. A uniform magnetic field is pointing in
the positive x-direction. The electrons and ions are continuously emitted from the
boundary at x = x;, where x is the system length in x-direction. The potential at '
x =x1,y =0, and y =y, are zero, where y, is the system length in a y-direction.
We can arbitrarily specify the potential at the boundary at x = 0. Poisson’s equa-
tion is solved by the method of superposition. We modified the code so that we
can apply a time varying potential at the boundary at x =0. The Berkeley group
will now use this code for fully bounded plasmas and as a key to an RZ model.




PROGRESS REPORT: RZ Project o

SUBIJECT: Two Dimensional, Cylindncal (in r and z directions) Multignd Poisson Solver

BY: Conway Gee

Motivation

The ultimate goal will be to write a computer code that will simulate plasma in two dimensional
cylindrical coordinates. Many physical sysicms are in cylindrical coordinales.

An interesting mathematical problem has arisen from the project. And the problem is coming up
with a ‘fast’ method to solve the two dimensional, cylindrical Poisson’s equation in the r and z
directions.

1 9(rd@(r,z)) + c’)zﬂ(r,z)laz2 = -p(r,z), where p is the known chérge,
r or or and @ the potential to be solved,

and zero value boundary conditions.

The system looks like this.

r
Pl
cen el e e T z

At first we looked at a Fast Sine (Founier) Transform to find the solution along the z direction
and perhaps a ‘fast’ Bessel series in the r direction. The FST requires O(N logN) arithmetic
operations, which is nearly optimal in terms of efficiency (i.e. it is very fast). The algorithm for
the FST is already well known. However, the suggested ‘fast’ Bessel series will require some
study for it is not so well known.

The disadvantage of using the FST is that it is rather specialized. The FST can be applied
primarily 10 systems which arise from separable self-adjoint boundary value problems.
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The Mulignd Method

Introduction

The mulrigrid method is a culmination of results from trial and error ever since iterative, or
relaxation, methods were first used to achieve a solution. Ideas about making the iterative methods
converge faster were known for many years, but only until recently has these ideas been
formalized as the multigrid method.

Review of the Classical Methods
If the original operator matrix A in the system Ax = b is too difficult to work with (via Gaussian
elimination, clc.), then another, simpler matrix can be used in place of A. Calling the new matrix
M, we have
Mx =(M-A)x+b (D

In the classical iterative methods, (1) is solved iteratively by successive substitutions.
Beginning with an initial guess X, it may be the vector of zeros, the current guess x; leads to the

next approximation.
Mx =M -A)x +b 2)

The basic choices of M are: 1. M = diagonal part of A (Jacobi’s method)
2. M = nangular part of A (Gauss-Seidel method)

Note that the choices of M are ‘close’ to A. Why they should be ‘close’ to A has to do with
convergence.

The convergence, or divergence, to the solution x depends on M and A. Subtracting (2) from
(1), we have the error equation for e, = X - X.

Meg,, =(M - A)e,
or ek+1=M'l(M -A)ek

= Be,, where B=M (M - A)
=1-MA

The current error is related to the onginal error, e, = BkeO :

Thus, the goal is to make e, converge to zero, and that will happen only when the powers of B
converge 10 zero.

e, ->0 and x, ->x iff B->0
Recall that B kc0 sphts into terms of the eigenvectors and eigenvalues of B. Then

Bkeo = c](ll)kwl +...+ cn(ln)kwn , where | denotes the eigenvalues
and w the eigenvectors.




Therefore, the powers Bx converge to zero if and only if every cigenvaluc of B satisfics the
condition

The rate on convergence depends on the largest | |, |, which 1s called the spectral radius of B.

The matrix M should satisfy two critena:
1. The equation M x; ,; = (M - A)x; + b should be easy to solve. Hence, M should be

convenient to use.
2. M should be ‘close’ to A, so that the eigenvalues of B = M ‘l(M -A)=1-M A are small
(less than one).

Jacobi’s method takes M as the diagonal part of A. If all a; are nonzero, then the diagonal
matnx, D, is easily invertible. The matrix representaion is

ka+l=(D 'A)xk+b, ,

a~d by elements
a5 (X gy = (-2p0Xp - 33X3 - - apX )y + by
ann(Xpkae1 = (ap Xy - Xy - oo - a1 X, g+ by

The Gauss-Seidel method is different in that it starts using each component of the new x, , as
soon as it is computed. Then x; | replaces x; an element at a time, and the old vector xy_is
replaced as fast as X, is created. The first step finds the first component as in Jacobi's method,
and the next step operates immediately with that first new component.

a99(X9)ke1 = 321 (XPka + (-93X3 - - - 29 X))y + by

The last equation uses the new values exclusively.

%n(xn)kﬂ = ('anlxl EETYL% ann-lxn-l)k«»l + bn

M here is the lower triangular part of A, when all the terms X, , are moved to the left side. On the

right side, M - A is a strictly upper triangular matrix.

Improvements of these methods, such as successive overrelaxation and red-black ordering, are
also well known.

The problem with the classical iterative methods mentioned above, even with improvements, is

that convergence is controlled by the largest eigenvalue of B= M "Y(M - A), which usually is
associated with errors of lowest frequencies. High frequency errors are quickly eliminated, but tke
smooth component of error holds back convergence.

As an example of the relationship between error and eigenvalucs, let’s examine the one
dimensional s::ond order differential equation

u”'(x) = -f(x), 0 <x < 1, with the boundary conditions u(0)=u( 1)=0

The domain of the problem is partitioned into N subintervals by the grid points




X = jh, where h = 1/N is the constant width of the subintervals. The discretized form of the
equation is
4 U 2= _f(x.
(uJ-_l+2uJ+uJ+l )/h f(,\J)
Recall that the Jacobi method uses the diagonal part of the operator matrix such that
B=1-D-lA

and written out for our example, the matrix B looks like the following.

™ -1 ]
q 2 -1
B=1-1 o
2 .
-1
i ‘12 |

The eigenvalues of B and A are related by
I(B)=1-1(A)/2.
The eigenvalues of A are found to be
I(A ) = 4sin®(lou / 2N), where 1 sk s N-1,
and the eigenvectors, represented as wy § the jth component of the kih eigenvector,
wkdzsin(jkn/N), Isk=sN-1, 0<j<N.
Thus, the eigenvalues of B are
I(B)=1-2sin}(kn/ 2N), 1 <k <N-1.
Modes in the lower half of the spectrum, where the wave number has the range 1 < k < N/2, are
said to be the low frequency or smooth modes. The modes in the upper half of the spectrum, with
N/2 < k < N-1, are called high frequency modes.
For the lowest frequency, k = 1,
I;=1-2sin%(n/2N) = 1-2sin¥(nh/2) =1 - a%h?/2,
and recalling the relationship,
€ = Bkeo = cl(ll)kwl +...+ cn(ln)kwn, here, k 1s not the wave numbet
the equations suggests that the eigenvaluc associated with the smoothest mode will be very close to

one, and therefore convergence to the solution will be slowed down. Notice that the smaller the
gnd spacing h, the closer




1, is to 1. Hence, any attempt to improve the accuracy by decreasing the size of the grid spacing
will only worsen the convergence of the smooth components of error.
Multigrid

The multigrid method changes the scale of the problem so that the smooth component of error

can be reduced more rapidly. Thus, the idea is to change the grid. Smooth errors on a grid of
width h can be attacked on a coarser grid, say, of width 2h, where the error is not so smooth. The

following is an outline of an elementary multigrid method. Here, 1 denotes the grid associated
with spacing h, and x is the vector associated with Qb.

Coarse Grid Correction Scheme, xb <- CG(xh,bh)

Relax y times on APxb = b2 on QR with any initial guess.
(4 1s any arbitrary small number, i.e. 3,4, or 5)

Compute the residual M= b - Abxh,

Transfer this vector to a coarse grid, r2h = crh.

Solve the coarse system AZhezh = (2h on 2h

Transfer the correction to the fine grid, el = Fe2h,

Make the correction to x, (xB)oew = xb 4 eh.

Relax on ABxb = bb on Qb until desired solution is reached.

The coarsening matrix C combines the nine values on the fine grid to give a single value, at their
center, on the coarse grid. The weights are shown in the figure and are mutiplied by 1/16. The
refining matrix F reverses what C does; each coarse value splits into nine values on the fine grid.

The next trick is evident. Why not nest the CG scheme? The coarse system A2Pe2h = 2 cap
also be coarsened further, ‘a correction on the correction,” so to speak. This recursive nesting
makes the method possible for asymptotic optimization. The nested scheme is sketched in the
following diagram, and by its shape, it is called the V-cycle.

h

2h
4h
&

161




A more sophisticated scheme, called the full multigrid scheme, nests if V-cycles themselves.

The scheme begins by initializing bY, b2b, . . ., and sets xB, x2b, . . . to zero. The following is the
schedule of the full multigrid scheme.

h
2h

h

&h

The Poisson Solver .
In our case, the discretized del square operator of the Poisson’s equation has the form

40(1j)/Ar2 - (4AR + 2A23B(0,]) + (D(0,j+1)+D(0,j-1))/Az% = -py; , forr =0,

(B(i,j+1)+D(ij-1))/Az2 + (+AHDD(i+1§) + (AUDDB(-1,) - (VAR + 2/Az2)D(i,j)
rAr? rAr?

= -p(i,j). forr =0,

which determines the operator matrix. The grid that describes the charges p is initially coarsened
so that the full multignd scheme can be used. The operator matrix remains the same (i.e. its
elements are not weighted).

The advantage of the iterative methods, even without muitigrid, is that the boundary conditions
can vary. Say the walls of the cylinder are grounded, or zero, then the @ matrix will have its
appropriate elements fixed to zero. Even these elements of zeros can be fixed to any arbitrary value
other than zero. Different geometries can also be easily done with any number of boundary
conditions. All that is needed to be done is to fix the correct @ elements with the proper values.

Included with this report is the early version of my program using the full multigrid scheme,
and initial results appear promising. In one test, the time it takes full multigrid to solve a system up
to five significant digits is roughly the same as the time it takes for the FST to solve a one-
dimensional problem with the same number of grid points (256x256=65536). In another test, the

method solves for the 4x4 cylindrical system p = 422 - zz)/r,2 + 2(r?/r;2 - 1), where the solution is
3y’ 1

@=(2/r;2-1)(z2-72). The red-black Gauss-Seidel method takes roughly 90 fine grid iterations to

achieve what full multigrid does in only 8 fine grid iterations, along with the much less expensive
coarse gnd iterations.
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A New Approach to Traveling Wave Tube Simulation and Design[1]

E.H. Chao, C.K. Birdsall
September 26, 1991

’

IBC (Interactive Beam Circuit) is a one-dimensional traveling wave tube simulation that runs on
PC'S and UNIX workstations under X. The code uses PIC techniques to model the motion of
beam electrons and simple finite-difference methods to model the fields of the coupled slow-wave

transmission line.(2] We ate currently running simulations at differing values of the Pierce variables

QC, C, and b and measuring the power gain at each of these conditions. These measurements are
then compared to values calculated by Birdsall and Brewer. [3],[4] The initial comparisons have

been encouraging. In addition, changes are being made to the code to make it more valuable to

tube designers. These changes include adding new diagnostics (f(E) at collector), modifying old

diagnostics, and optimizing the code.

Shown below are some diagnostics for C = 0.096, QC = 0.0799, and b = 0.521.

Vx-X Phase Space

1E4

1E3

LoglO(Pewer ! Input Power)

i ‘
b ! ’
{ : \ .
Position (m) 0.1§
Logl0(Power / Input Power)
Pesition (m) 15
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Simulation of Potentials Created
by Particulates in RF Discharges:
Residence at the Sheath Edges

Frank S. Tsung', Jan Trulsen?,
Vahid Vahedi, C. K. Birdsall

Plasma Theory and Simulation Group,
EECS Department, Univ. Of Calif. Berkeley, CA 94720

Abstract

Heavy particles may play a role in determining the average potentials
experienced by ions in RF discharges, her.ce ion acceleration into targets.
Particulates or dust particles also may play a role in many other plasmas.
Hence, it is desirable to find where these heavy particles reside (with
respect to the edge of the plasma, or sheath) and their effect on the time-
average potential which accelerates ions through the sheath.

Using our many-particle PIC-MCC 1d3v simulation code PDP1"], we
have been able to show that the particulates tend to become charged nega-
tively, usmg cross sections for electron and ion attachment worked out by
Trulsen"”, inspired by work of R. Carlile at Univ. Of Arizona'®. We have
placed one heavy particle at various locations in the sheath and found the
location where the time average field is a minimum,; this is then the resi-
dence of the particle, which turmns out to be very near the time averaged
sheath edge. We are now putting in a large number of particulates and
allowing them to reach their respective equilibrium positions. Ion trans-
port is observed only after the addition of a viscous term in the force equa-
tion. Without the addition of the ion drag, the dust particles exhibit
behaviors similar to those of the negative ions. However, with the viscous
term in the force equation, the particulates exhibit behaviors consistent
with those observed in the laboratory.

1 Current address: Department of Physics, UCLA, Los Angeles, CA 90024.
2 Current Address: Univ. of Tromso, P.O. Box 953, N9001, Tromso, Norway.
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Introduction

e A dust particle will tend to charge negatively and therefore acquire an electric
potential negative charge. Intuitively, the excess charge is caused by the
higher thermal velocity of the electrons.

*  Due to its excess negative charge, particulates will create a local potential bar-
rier inside the plasma. This will cause many interesting effects:

« Scattering of waves with wavelength A <A,

« Effecis the overall charge balance of the system.
« Creates a potential barrier for positive ions (See Fig. 1).

» Competes with other collisional processes in a laboratory plasma.

*  Our interest in the dusty plasma is related to the presence of sub-micron dust
contamination in plasma aided processing. The dust particles are produced by
chemical and mechanical means. In some cases, nucleation and growth from
plasma negative ions and etch products is the mechanism for particle forma-
tion. In other cases, stress-inducing processes may fracture thin films on
chamber surfaces thereby injecting particles into the plasma. Laboratory
studies show that these particles are suspended near the sheath edge and drop
onto the wafer when the rf power is turned off, thereby contaminating critical
product surfaces. In the semiconductor industry, it has been claimed that up
to 50% of rejectlon rate is directly caused by the bombardment of dust par-
ticles on the wafers'’, Our main objective is to develop a self-consistent
model to simulate dust particles in RF-driven discharges. In addition, we will
show that our model agrees with basic probe theories when apphed to undri-
ven discharges.
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PIC-MCC Scheme

«  From optical measurements made by Singh et. al.”’, we have gained some
fundamental understanding of the particulates. In the situations which we are
interested, it has been observed that the particulates (dust particles) are:

 Spherical in shape.
» Located at the sheath edge.
*  So, given that the dusty particles are spherical in shape, we can define the

capturing cross section as the cross-section for absorption of electrons and
ions by the dust particle (particulate), i.e.:

q,.U q.:U
_ 2 _ ¢.i” floar _ e floa
ouimra’(1-2 Jof1-)

This model has been implemented using a Particle-in-Cell, Monte-Carlo col-
lision (PIC-MCC) scheme. 1a Monte-Carlo scheme, the probability for

each particle to undergo collision in a time-step Az is given by:

(-v, ,o,n A1)

P(,)= 4 e

In our code, we generate a random number (r) between 0 and 1, then, the ran-
dom number is compared with the collisional probability(P(v)). If the ran-
dom number falls within the collisional probability, then a collision is to take
place within that time-step. In the case of electron and ion absorptions, two
events take place when a collision occurs:

* The charge of the dust particle is incremented by an amount of g,
(charge of the absorbed species.)

* The particle is annihilated. (See Fig. 3)
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e  The advantages of this algorithm are:

Can e easily converted into 2-D and 3-D particle simulations.

Can be added into an existing code without changing the structure of the
code.

»  However, this algorithm also has its flaws:

IEEE-91

Each dust particle is treated as a separate collisional process, hence, for
multiple dust particles, the simulation can be time consuming.

The code requires s large number of electrons and ions in order to have
good statistics.




Simulation Parameters

The collisional model has been implemented using an one-dimensional, bounded
simulation code, PDP1. At ¢ =0, a maxwellianized plasma uniformly fills the

space with temperature T, and density n,. A sheet of dust particle is immersed in
the plasma at distance L,. The plasma is allowed to reach equilibrium. The com-
mon parameters are:

. Aigon Plasma

» Temperature (at t=0) = 1eV to SeV

« Initial Plasma Density = 10" m”

 Neutral Density =0

* Length=10cm

» Number of Simulation Particles (t=0) = 8000 per species

In the undriven simulations, we set the neutral pressure to zero in order to suppress
all competing collision processes. Therefore, only attachment of electrons and ions
is allowed during these runs.

In the RF-driven runs, neutral gas is tumed on so electron-neutral, ion-neutral, and
dust attachment are present during each simulation. Additionally, a 500-Volt RF
source is applied at 13.56MHz. This creates a sheath of 1.70 to 2.60 centimeters,
depending on the phase of the RF cycle. The additional parameters are:

¢ Neutral Pressure = 10 mTorr
« Frequency = 13.56 MHz (g =8.2- 107sec™)

 RF voltage amplitude = 500 Volts
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Resuts:

PART I: Undriven Discharges

In order to verify our collision scheme, we have placed a sheet of dust par-
ticles in an undriven, maxwellianized plasma, then allow the sheet to reach
equilibrium. The floating potential of the dust is then compared with probe
theory to verify our algorithm. The floating potential of a probe can be calcu-
lated as followed. Let:

« V, = Velocity of each species.
T, = Temperature of each species.

In an unmagnetized plasma, the plasma species have no directional prefer-
ence, hence, each of the plasma species follows an isotropic Boltzman distri-

bution, i.e.:
20 N i 70 I i 1
— a7, | |7, | | 27,
f(v)=e e

(4

So, using the distribution above, we can calculate the current for the plasma
species:

I(V)= ?L(V)

2

my

: .j] [ ...3]
1,(V) =nqu dv, v, e( m']f dvye[ T f dv.e g

Here we assumed the probe is facing the x-direction, hence, only the
x-component of the velocity contributes to the current. However, for elec-
trons, the above equations must be modified, because the slow electrons are
repelled by the probes. So, if we define:
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N P

V. =
min m¢

The quantity v,, is the threshold velocity for the electrons and the slow elec-

trons do not contribute to the current. Therefore, the modified equation for
electron current becomes:

2

2
my my

.,2]
1,(V)=nqA f dv, v, e[_m'] f dvye[—w'} f dv,e[-w'

The above description of electron and ion behavior would yield the familiar
curve of the langmuir probe. For our purpose, we can think of the dust par-
ticles as floating probes. And the dust particle acquires a negative potential
such that the equilibrium electron flux equals to the ion flux.

Electron Saturation Current ———¢7

Floating PotentiJ
=0 2mzeas l

; F

lon Saturation Current |

V v=0
Langmuir Probe I-V Characteristic
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So, we can derive the floating potential by setting /, =I;. This gives the sim-
ple and familiar expression for the floating potential, i.e.:

T, m; 12
Vi=—+ 1"(7;)

We have compared the above results with those obtained by simulation, and
we’ve found our model shows reasonable agreement with theory.

Temperature [eV]  V,(Theory) [V] V; (Simulation) [V]

1 4.32 4.18
2 -8.64 -8.23
3 -12.96 -12.21
4 -17.28 -16.59
5 -21.60 -20.85

The discrepancies in the results indicates that there are excess electrons in our
model. However, if we taken the spherical geometry of the probe into
account and define the enhanced probe area through the following equations:

A, V)= m’{nmlv'z)

A G V)= 2eV 1- 2eV
Rt T

Hence, usmg the improved model, we can recalculate the floating potentxal,
once again, by setting I, =1,, and we have:

Temperature [eV]  V,(Theory) [V] V, (Simulation) [V]

1 4.18 4.18
2 -8.25 -8.23
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3 -12.35 -12.21
4 -16.95 -16.59
5 -20.90 -20.85

So, taken the geometry of the probe into account, we have shown that our
model agrees well with theory. (See below.)

Floating Potential Measurements
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Part II: RF-Driven Plasmas

So, given that our algorithm is consistent with basic probe theories, we now tum
our attention to RF-driven discharges. In these runs, we are particularly interested
in two aspects of the dust dynamics:

e  The position near the sheath-plasma boundary which the local time-
averaged field is a minimum.

*  The macroscopic dynamics of dust particles inside the bulk.

To understand the equilibrium position of the particulates, we use techniques simi-
lar to those used in the undriven plasma. A sheet of immobile dust particle is
placed near the sheath of the plasma. Diagnostics are added to measure the
peak-to-peak average field at the position of the dust. The parameters are the same
to those in the undriven plasma, with the addition of a 500 Volt RF source oscillat-
ing at 13.56MHz. This RF source produces a sheath ranging from 1.7 to 2.6 centi-
meters, depending on the phase of the RF cycle.

In these runs, a large local field is created by the excess negative charges of the
dust particles. This field creates a potential barrier hence effects the dynamics of
ions near the wall (i.e. wafer). The large field also changes the field configuration
around the sheath. So, by placing the dust particles at various positions in the RF
sheath, we can find the special position where the average field is at a minimum,
and that is the equilibrium position of the particulates. Our measurement yields an
equilibrium position of 2.55cm, which is at the sheath-plasma boundary, consistent
with observations made in the laboratory.

To study the macroscopic dynamics of the dust particles, we made runs with a
large number of dust particles in the bulk. The dust particles are give finite mass,
given by the equation:

m,=p-r,
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where p is the density of the dust particles (we use water density here), and r, is
the radius of the dust particles. Using optical measurements made in the labora-
tory, we chuose the dust radius to be 0.2 microns. This gives a mass of 8 - 107

grams, which is 10 to 10° greater than the ion mass. The equilibrium charge of the
dust particles are also in the order of 100s of the electrons and the argon ions,
hence, the dust charge to mass ratio of the dust particle is in the same order as that
of the argon ions. In these runs, the dust particles exhibit behaviors similar to those
of the negative ions and they are evenly distributed inside the bulk even after
hundreds of RF cycles.

Although we have found the equilibrium position for the particulates near the
sheath, the electric field around the equilibrium position is quite large hence it is
very difficult for a dust particle of finite mass to maintain its equilibrium position.
Therefore, it is necessary to introduce additional forces that would damp the the
large time-averaged electric field in the plasma sheath. The work done by Som-
merer et. al. suggests that ion drag force (including electrostatic interactions and
interactions with the neutral gas) plays a significant role in the transport of dust
particles. In the simulation works done by Sommerer et al., the shielded charge of

the dust particle Z’,, is modified according to the equation.

Zp=(1-N1+fZ,

Where f =| E(z,t)/E,, |, where E,, is the macroscopic electric field at a distance of

one Debye length A from the dust particle of charge Z,,. The shielded charge Z°,,
varies according to the local electric field and plasma conditions. In weak field
regions such as the bulk plasma, Debye shielding is quite effective, and Z° is

assumed to be 1. Debye shielding is less effective for particles in the strong RF
fields in the sheath because the response times for electrons and ions in the Debye
sphere are much longer than the RF period. Particles in the sheaths may therefore
respond to the field as though they are less than fully unshielded. The net effect of

the modified Z°) is a strong confining force at {'1e sheath of the plasma, causing
the dust particles to stay near the boundary of the sheath.

In our simulations, we modify the expression for the acceleration experienced by
the dust particles by adding a viscous term inside the sheath, i.e.:

v=qg/m-E(x,t)-n-v
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Where the viscous term 1 includes effects such as the interaction of dust particles
w1th the neutral gas, as well as the electrostatic interactions described in Sommer-

I, Although the interaction of dust with the neutral gas is unknown, it is intu-
mve that the collision probability increases when the particulate velocity is large.
Inside the bulk, the velocity of a dust particle is very small so the particulate is not
likely to interact with the neutral gas. Therefore, thermal motion dominates the
dust dynamics inside the bulk. When the dust particle passes through the sheath, it
is accelerated and picks up momentum very quickly. We expect the viscous term
to be significant when the particulate velocity is large, because the dust particle is
more likely to interact with the neutral gas; therefore, the drag term is included
only inside the sheath.

So, we add the following lines to the mover (isp is the species index and i is the
index for the particles):

/* PLASMA_SP is the number of plasma species */
/* LFT_EDGE and RHT_EDGE are measured using
uncontaminated RF discharges */

if((isp<PLASMA_SP) |l
ix[isp][i]>LFT_EDGE && x[isp][i}l<RHT_EDGE))

v{isp][i]+=atemp;
}else

v([isp][i}+=atemp-eta*v[isp][i};

Using 1 of 0.01 to 0.03, we observe migration of dust particles toward the edge
- after approximately 100 RF cycles.
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Conclusion

In this paper, we presented simulation results for both driven and undriven plas-
mas. In the situations where there is only one sheet present, it is observed that the
particulates acquire a negative potential consistent with basic probe theories.
Furthermore, in the RF-driven cases, we observe that the average field is at a mini-
mum near the edge of the plasma sheath, which agrees with experimental observa-
tions. Furthermore, using water density, the equilibrium charge-to-mass ratio of
the dust particles is similar to those of the ions; therefore, the dust particles would
behave like negative ions if Lorentz force is dominant. In the runs where a large
number of particulates are used, we believe that ion drag force, including interac-
tion with the neutral gas as well as the electrostatic interaction with the plasma spe-
cies, is the dominant force in dust transport.
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The presence of the dust particles effects the overall charge neutrality, and creates a potential
barrier (lower plot). The above plots are made by placing an immobile sheet of dust particle near

the sheath of the plasma. In this case, the particulate is placed atx, = 1.9cm.
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The presence of the dust particles effects the overall charge neutrality, and creates a potential
barrier for ions (lower plot). The above plots are made by placing an immobile sheet of dust

particle near the sheath of the plasma. In this case, the particulate is placed at x,=1.5cm.
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Viscous force plays an important role in the transport of dust particles. The upper plot is made
without drag force, and the lower plot is the same simulation, with the addition of a viscous term
in the force equation.
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